Die Laplace-Gleichung ist eine wichtige partielle Differentialgleichung, die in der Mathematik und Physik weit verbreitet ist. Sie wird häufig in Bereichen wie der Elektrostatik, Fluiddynamik und der Wärmeleitung verwendet. Die Gleichung ist definiert als:
wobei der Laplace-Operator ist und eine skalare Funktion darstellt. Diese Gleichung beschreibt das Verhalten von skalaren Feldern, in denen keine lokalen Quellen oder Senken vorhanden sind, was bedeutet, dass die Funktion in einem bestimmten Gebiet konstant ist oder gleichmäßig verteilt wird. Lösungen der Laplace-Gleichung sind als harmonische Funktionen bekannt und besitzen viele interessante Eigenschaften, wie z.B. die Erfüllung des Maximum-Prinzips, das besagt, dass der maximale Wert einer harmonischen Funktion innerhalb eines bestimmten Bereichs an seinem Rand erreicht wird.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.