StudierendeLehrende

Supply Chain Optimization

Die Supply Chain Optimization (Lieferkettenoptimierung) bezieht sich auf den Prozess der Verbesserung der Effizienz und Effektivität aller Aktivitäten, die in der Lieferkette eines Unternehmens stattfinden. Ziel ist es, die Gesamtkosten zu minimieren und gleichzeitig die Servicequalität zu maximieren. Dies umfasst verschiedene Aspekte wie die Planung, Beschaffung, Produktion, Lagerung und Distribution von Waren und Dienstleistungen.

Ein zentraler Bestandteil der Lieferkettenoptimierung ist die Analyse und Gestaltung von Flussdiagrammen, um Engpässe oder Überkapazitäten zu identifizieren. Hierbei kommen häufig mathematische Modelle und Algorithmen zum Einsatz, um Entscheidungsprozesse zu unterstützen. Beispielsweise kann die Optimierung des Bestandsniveaus mit der Formel:

EOQ=2DSH\text{EOQ} = \sqrt{\frac{2DS}{H}}EOQ=H2DS​​

beschrieben werden, wobei DDD die Nachfrage, SSS die Bestellkosten und HHH die Lagerhaltungskosten sind. Durch effektive Strategien zur Optimierung der Lieferkette können Unternehmen nicht nur Kosten sparen, sondern auch ihre Reaktionsfähigkeit auf Marktveränderungen erhöhen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Poincaré-Diagramm

Eine Poincaré-Karte ist ein wichtiges Werkzeug in der dynamischen Systemtheorie und der nichtlinearen Dynamik. Sie wird verwendet, um das Verhalten von dynamischen Systemen zu analysieren, indem sie eine höhere Dimension in eine niedrigere Dimension projiziert. Dies geschieht, indem man die Trajektorie eines Systems in einem bestimmten Zustand beobachtet und die Punkte aufzeichnet, an denen die Trajektorie eine festgelegte Schnittfläche, oft als Poincaré-Schnitt bezeichnet, kreuzt.

Die Punkte, die auf der Karte dargestellt werden, liefern wertvolle Informationen über die Stabilität und Periodizität des Systems. Mathematisch wird die Poincaré-Karte oft durch die Abbildung P:Rn→Rn−1P: \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}P:Rn→Rn−1 beschrieben, wobei nnn die Dimension des Systems ist. Eine Poincaré-Karte kann helfen, chaotisches Verhalten von regelmäßigen Mustern zu unterscheiden und ermöglicht es, die langfristige Dynamik eines Systems auf intuitive Weise zu visualisieren.

Diffusions-Tensor-Bildgebung

Diffusion Tensor Imaging (DTI) ist eine spezielle Form der Magnetresonanztomographie (MRT), die die Bewegungen von Wassermolekülen im Gewebe analysiert, um die Struktur und Integrität von weißen Hirnsubstanz zu visualisieren. Durch die Messung der Diffusion von Wasser in verschiedenen Richtungen ermöglicht DTI, die Ausrichtung und das Muster der Nervenfasern im Gehirn zu bestimmen. In der weißen Substanz diffundieren Wasser-Moleküle tendenziell entlang der Nervenfasern, was als anisotrope Diffusion bezeichnet wird. Anhand der gewonnenen Daten kann ein Diffusionstensor erstellt werden, der eine mathematische Beschreibung der Diffusion in drei Dimensionen liefert. Die wichtigsten Parameter, die aus DTI extrahiert werden, sind der Fractional Anisotropy (FA), der die Struktur der Nervenbahnen bewertet, und die Mean Diffusivity (MD), die allgemeine Wasserbewegung im Gewebe beschreibt. DTI hat bedeutende Anwendungen in der Neurologie, insbesondere zur Untersuchung von Erkrankungen wie Multipler Sklerose, Schlaganfällen und traumatischen Hirnverletzungen.

Backstepping Control

Backstepping Control ist ein systematisches Verfahren zur Regelung nichtlinearer dynamischer Systeme, das auf der Idee basiert, ein komplexes System schrittweise in einfachere Teilsysteme zu zerlegen. Durch die schrittweise Entwicklung der Regelung wird eine hierarchische Struktur geschaffen, die es ermöglicht, die Stabilität und das Verhalten des gesamten Systems zu analysieren. Der Prozess beginnt mit der Definition eines stabilen Zielzustands und führt dann durch iterative Rückwärtsschritte zu den Eingangsgrößen des Systems.

Ein zentrales Konzept ist die Lyapunov-Stabilität, die sicherstellt, dass das gesamte System stabil bleibt, während die Teilsysteme nacheinander behandelt werden. Mathematisch wird oft eine Lyapunov-Funktion verwendet, um die Stabilität jeder Ebene zu zeigen. Diese Methode ist besonders nützlich in der Robotik, der Luft- und Raumfahrt sowie in anderen Bereichen, in denen komplexe nichtlineare Systeme gesteuert werden müssen.

Zentraler Grenzwertsatz

Der Zentraler Grenzwertsatz (Central Limit Theorem, CLT) ist ein fundamentales Konzept in der Statistik, das besagt, dass die Verteilung der Mittelwerte einer ausreichend großen Anzahl von unabhängigen, identisch verteilten Zufallsvariablen approximativ normalverteilt ist, unabhängig von der ursprünglichen Verteilung der Daten. Dies gilt, solange die Variablen eine endliche Varianz besitzen.

Der Satz ist besonders wichtig, weil er es ermöglicht, mit normalverteilten Annahmen zu arbeiten, selbst wenn die zugrunde liegende Verteilung nicht normal ist. Bei einer Stichprobe von nnn Beobachtungen aus einer Population mit dem Mittelwert μ\muμ und der Standardabweichung σ\sigmaσ konvergiert die Verteilung des Stichprobenmittelwerts xˉ\bar{x}xˉ gegen eine Normalverteilung mit dem Mittelwert μ\muμ und der Standardabweichung σn\frac{\sigma}{\sqrt{n}}n​σ​, wenn nnn groß genug ist.

Zusammengefasst ist der zentrale Grenzwertsatz entscheidend für die Anwendung statistischer Methoden, insbesondere in der Hypothesentestung und bei der Konstruktion von Konfidenzintervallen.

Eulers pentagonales Zahlentheorem

Der Euler’s Pentagonal Number Theorem ist ein bemerkenswerter Satz in der Zahlentheorie, der eine Verbindung zwischen den pentagonalen Zahlen und der Theorie der Partitionszahlen herstellt. Eine pentagonale Zahl PkP_kPk​ ist definiert durch die Formel

Pk=k(3k−1)2P_k = \frac{k(3k - 1)}{2}Pk​=2k(3k−1)​

für k=1,2,3,…k = 1, 2, 3, \ldotsk=1,2,3,… und ihre negativen Indizes k=−1,−2,−3,…k = -1, -2, -3, \ldotsk=−1,−2,−3,…. Der Satz besagt, dass die unendliche Reihe der Partitionszahlen p(n)p(n)p(n), also die Anzahl der Möglichkeiten, eine positive ganze Zahl nnn als Summe von positiven ganzen Zahlen zu schreiben, durch die pentagonalen Zahlen dargestellt werden kann:

∑n=0∞p(n)xn=∏k=1∞11−xPk⋅11−xP−k\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^{P_k}} \cdot \frac{1}{1 - x^{P_{-k}}}n=0∑∞​p(n)xn=k=1∏∞​1−xPk​1​⋅1−xP−k​1​

Diese Beziehung zeigt, dass die Partitionszahlen sowohl positive als auch negative pentagonale Zahlen verwenden. Euler’s Theorem hat weitreichende Anwendungen in der Kombinatorik und der theoretischen Mathematik, da es tiefe Einblicke in die Struktur von Partitionszahlen

Mems-Sensoren

MEMS-Sensoren (Micro-Electro-Mechanical Systems) sind mikroskopisch kleine Geräte, die mechanische und elektrische Komponenten kombinieren, um physikalische Größen wie Beschleunigung, Druck, Temperatur und Feuchtigkeit zu messen. Diese Sensoren basieren auf der Integration von Mikroelektronik und mechanischen Strukturen auf einem einzigen Chip, was sie besonders kompakt und leistungsfähig macht.

Die Funktionsweise beruht häufig auf der Nutzung von Mikrostrukturen, die auf physikalische Änderungen wie Bewegungen oder Druck reagieren und diese in elektrische Signale umwandeln. Ein typisches Beispiel sind Beschleunigungssensoren, die die Änderung der Bewegung messen, indem sie die Verschiebung einer Masse in einem Mikrochip detektieren. MEMS-Sensoren finden breite Anwendung in der Automobilindustrie, der Medizintechnik, der Unterhaltungselektronik und vielen anderen Bereichen, da sie eine kostengünstige und präzise Möglichkeit bieten, Daten in Echtzeit zu erfassen und zu verarbeiten.