Market Failure

Marktversagen tritt auf, wenn der freie Markt nicht in der Lage ist, Ressourcen effizient zu allocieren, was zu einem suboptimalen Ergebnis für die Gesellschaft führt. Dies kann aus verschiedenen Gründen geschehen, darunter externale Effekte, Öffentliche Güter und Marktmacht. Externe Effekte, wie Umweltverschmutzung, entstehen, wenn die Handlungen eines Wirtschaftsakteurs die Wohlfahrt eines anderen beeinflussen, ohne dass diese Auswirkungen in den Preisen berücksichtigt werden. Öffentliche Güter, wie nationale Verteidigung, sind nicht ausschließbar und nicht rivalisierend, was bedeutet, dass niemand von ihrem Nutzen ausgeschlossen werden kann und ihr Konsum durch einen Individuum nicht den Konsum anderer einschränkt. Diese Merkmale führen dazu, dass private Unternehmen oft keinen Anreiz haben, solche Güter bereitzustellen. Schließlich kann Marktmacht bei Monopolen oder Oligopolen zu Preiserhöhungen und einem Rückgang der Gesamtproduktion führen, was ebenfalls zu Marktversagen beiträgt.

Weitere verwandte Begriffe

Mensch-Computer-Interaktion Design

Human-Computer Interaction Design (HCI-Design) beschäftigt sich mit der Gestaltung der Schnittstelle zwischen Menschen und Computern, um die Benutzererfahrung zu optimieren. Ziel ist es, benutzerfreundliche Systeme zu entwickeln, die intuitiv zu bedienen sind und den Bedürfnissen der Nutzer gerecht werden. HCI-Design umfasst verschiedene Disziplinen wie Psychologie, Informatik und Design, um ein tiefes Verständnis dafür zu erlangen, wie Menschen mit Technologie interagieren. Dabei werden Methoden wie Benutzerforschung, Prototyping und Usability-Tests eingesetzt, um sicherzustellen, dass die entwickelten Produkte sowohl effektiv als auch angenehm in der Nutzung sind. Ein zentrales Prinzip ist die Benutzerzentrierte Gestaltung, bei der die Perspektive und die Bedürfnisse der Benutzer im gesamten Entwicklungsprozess im Vordergrund stehen.

Implizites Runge-Kutta

Der implizite Runge-Kutta-Algorithmus ist eine erweiterte Methode zur Lösung von gewöhnlichen Differentialgleichungen, die besonders vorteilhaft ist, wenn es um steife Probleme geht. Im Gegensatz zu expliziten Methoden, bei denen der nächste Schritt direkt aus den bekannten Werten berechnet wird, erfordert die implizite Methode die Lösung eines Gleichungssystems, das die Unbekannten des nächsten Schrittes enthält.

Die allgemeine Form einer impliziten Runge-Kutta-Methode kann durch folgende Gleichungen dargestellt werden:

yn+1=yn+hi=1sbikiy_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i ki=f(tn+cih,yn+hj=1iaijkj)k_i = f(t_n + c_i h, y_n + h \sum_{j=1}^{i} a_{ij} k_j)

Hierbei sind hh die Schrittweite, kik_i die Stützwerte und aij,bi,cia_{ij}, b_i, c_i die Butcher-Tabelle Parameter, die die Methode definieren. Der Hauptvorteil dieser Methoden liegt in ihrer Fähigkeit, stabilere Lösungen für Probleme zu bieten, die schnelle Änderungen oder große Unterschiede in den Skalen aufweisen. Daher sind sie besonders nützlich in der Ingenieurwissenschaft und Physik, wo steife Differentialgleichungen häufig auftreten.

Fourier-Koeffizienten-Konvergenz

Die Konvergenz der Fourier-Koeffizienten bezieht sich auf das Verhalten der Fourier-Reihe einer Funktion, wenn die Anzahl der verwendeten Koeffizienten erhöht wird. Eine Funktion f(x)f(x) kann durch ihre Fourier-Reihe dargestellt werden als:

f(x)a0+n=1(ancos(nx)+bnsin(nx))f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))

Hierbei sind ana_n und bnb_n die Fourier-Koeffizienten, die durch die Integrale

an=1πππf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx

und

bn=1πππf(x)sin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx

bestimmt werden. Die Konvergenz der Fourier-Koeffizienten ist wichtig, um zu verstehen, wie gut die Fourier-Reihe die Funktion annähert. Bei stetigen oder stückweise stetigen Funktionen konvergiert die Fourier-Reihe punktweise fast überall zur Funktion selbst, während bei sprunghaften oder nicht-stetigen Funktionen die Konvergenz an den Sprungstellen durch den Mittelwert der Funktion an diesen Punkten gegeben

Jensens Alpha

Jensen’s Alpha ist eine Kennzahl, die verwendet wird, um die Über- oder Unterperformance eines Portfolios oder eines einzelnen Wertpapiers im Vergleich zu einem geeigneten Marktbenchmark zu messen. Es wird berechnet, indem die erwartete Rendite eines Portfolios unter Berücksichtigung seines systematischen Risikos (gemessen durch den Beta-Wert) von der tatsächlichen Rendite abgezogen wird. Die Formel lautet:

α=Rp(Rf+β(RmRf))\alpha = R_p - \left( R_f + \beta (R_m - R_f) \right)

wobei:

  • RpR_p die tatsächliche Rendite des Portfolios ist,
  • RfR_f die risikofreie Rendite darstellt,
  • β\beta das Maß für das systematische Risiko ist,
  • RmR_m die erwartete Rendite des Marktes ist.

Ein positives Jensen’s Alpha zeigt an, dass das Portfolio besser abgeschnitten hat als erwartet, während ein negatives Alpha bedeutet, dass die Rendite hinter den Erwartungen zurückgeblieben ist. Diese Kennzahl ist besonders nützlich für Investoren, die die Leistung von Fondsmanagern oder Anlagestrategien bewerten möchten.

Brouwer-Fixpunkt

Der Brouwer-Fixpunktsatz ist ein fundamentales Ergebnis in der Topologie, das besagt, dass jede stetige Funktion, die eine kompakte konvexe Menge in sich selbst abbildet, mindestens einen Fixpunkt hat. Ein Fixpunkt ist ein Punkt xx in der Menge, für den gilt f(x)=xf(x) = x. Dieser Satz ist besonders wichtig in verschiedenen Bereichen der Mathematik und Wirtschaft, da er Anwendungen in der Spieltheorie, der Optimierung und der Differentialgleichungen hat. Zum Beispiel kann er genutzt werden, um zu zeigen, dass in einem nicht kooperativen Spiel immer ein Gleichgewichtspunkt existiert. Die Intuition hinter dem Satz lässt sich leicht nachvollziehen: Wenn man sich vorstellt, dass man einen Ball in einer Tasse bewegt, wird der Ball irgendwann an einem Punkt stehen bleiben, der der Tassenform entspricht.

Laplace-Beltrami-Operator

Der Laplace-Beltrami-Operator ist ein wichtiger Differentialoperator in der Differentialgeometrie, der eine Verallgemeinerung des klassischen Laplace-Operators auf beliebige Riemannsche Mannigfaltigkeiten darstellt. Er wird häufig in der Mathematik, Physik und Ingenieurwissenschaften verwendet, insbesondere in der Analyse von Wärmeleitung, Schwingungen und in der geometrischen Analysis. Der Operator wird oft durch die Formel

Δf=div(grad(f))\Delta f = \text{div}(\text{grad}(f))

definiert, wobei ff eine Funktion auf der Mannigfaltigkeit ist. Im Gegensatz zum klassischen Laplace-Operator berücksichtigt der Laplace-Beltrami-Operator die Krümmung und Struktur der Mannigfaltigkeit, was ihn zu einem mächtigen Werkzeug für die Untersuchung von Geometrie und Topologie macht. Zu den Anwendungen gehören unter anderem die Berechnung von Eigenwerten, die Untersuchung von geodätischen Strömen und die Modellierung von physikalischen Systemen in gekrümmten Räumen.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.