StudierendeLehrende

Microeconomic Elasticity

Die Mikroökonomie beschäftigt sich mit dem Verhalten von Einzelpersonen und Unternehmen in Bezug auf die Zuteilung von Ressourcen und die Erstellung von Gütern und Dienstleistungen. Ein zentrales Konzept in der Mikroökonomie ist die Elastizität, die misst, wie empfindlich die Nachfrage oder das Angebot eines Gutes auf Änderungen von Preis oder Einkommen reagiert. Es gibt verschiedene Arten von Elastizitäten, wobei die Preis-Elastizität der Nachfrage und die Preis-Elastizität des Angebots die bekanntesten sind.

Die Preis-Elastizität der Nachfrage wird definiert als:

Ed=% A¨nderung der Nachfragemenge% A¨nderung des PreisesE_d = \frac{\%\ \text{Änderung der Nachfragemenge}}{\%\ \text{Änderung des Preises}}Ed​=% A¨nderung des Preises% A¨nderung der Nachfragemenge​

Eine Elastizität größer als 1 zeigt an, dass die Nachfrage elastisch ist, d.h., die Konsumenten reagieren stark auf Preisänderungen. Im Gegensatz dazu zeigt eine Elastizität kleiner als 1, dass die Nachfrage unelastisch ist, was bedeutet, dass die Konsumenten weniger empfindlich auf Preisänderungen reagieren. Die Analyse der Elastizität ist entscheidend für Unternehmen, um Preisstrategien zu entwickeln und den Umsatz zu maximieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Arrow's Unmöglichkeit

Arrow's Impossibility, auch bekannt als das Unmöglichkeitstheorem von Arrow, ist ein fundamentales Konzept in der Sozialwahltheorie, das von dem Ökonomen Kenneth Arrow formuliert wurde. Es besagt, dass es kein Wahlsystem gibt, das alle folgenden drei Bedingungen gleichzeitig erfüllt, wenn es um die Aggregation individueller Präferenzen zu einer kollektiven Entscheidung geht:

  1. Nicht-Diktatur: Die Präferenzen der Gruppe sollten nicht vollständig von einer einzigen Person bestimmt werden.
  2. Pareto-Effizienz: Wenn alle Wähler eine bestimmte Option bevorzugen, sollte diese Option auch gewählt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Wahl zwischen zwei Optionen sollte nicht von der Verfügbarkeit einer dritten, irrelevanten Option beeinflusst werden.

Arrow zeigte, dass alle nützlichen Abstimmungssysteme in der Praxis eine dieser Bedingungen verletzen müssen, was zu der Schlussfolgerung führt, dass es unmöglich ist, ein perfektes Abstimmungssystem zu konstruieren, das den Ansprüchen der Fairness und Rationalität gerecht wird. Dies hat tiefgreifende Implikationen für die Entscheidungsfindung in demokratischen Systemen und für die Gestaltung von Abstimmungen.

Gitterreduktion-Algorithmen

Lattice Reduction Algorithms sind Verfahren zur Optimierung der Struktur von Gittern (Lattices) in der Mathematik und Informatik. Ein Gitter ist eine diskrete Menge von Punkten in einem Raum, die durch lineare Kombinationen von Basisvektoren erzeugt werden. Ziel dieser Algorithmen ist es, eine Basis für das Gitter zu finden, die kürzere und näher beieinander liegende Vektoren enthält, was in vielen Anwendungen wie der kryptografischen Sicherheit und der Integer-Programmierung von Bedeutung ist. Zu den bekanntesten Algorithmen gehören der LLL-Algorithmus (Lenstra-Lenstra-Lovász) und der BKZ-Algorithmus (Block Korkin-Zolotarev), die beide die Basis unter Verwendung von orthogonalen Projektionen und Reduktionsschritten anpassen. Eine reduzierte Basis ermöglicht nicht nur eine effizientere Berechnung, sondern verbessert auch die Leistung bei der Lösung von Problemen wie dem Finden von ganzzahligen Lösungen oder der Faktorisierung von Zahlen.

Arbitrage-Preisgestaltung

Arbitrage Pricing Theory (APT) ist ein Finanzmodell, das die Beziehung zwischen dem Risiko eines Vermögenswerts und seiner erwarteten Rendite beschreibt. Es basiert auf der Annahme, dass es mehrere Faktoren gibt, die die Renditen beeinflussen, im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen Marktfaktor betrachtet. APT ermöglicht es Investoren, Arbitrage-Gelegenheiten zu identifizieren, bei denen sie von Preisdifferenzen zwischen verwandten Vermögenswerten profitieren können.

Die grundlegende Idee hinter APT ist, dass der Preis eines Vermögenswerts als Funktion der verschiedenen Risikofaktoren dargestellt werden kann:

E(Ri)=Rf+β1⋅(F1)+β2⋅(F2)+…+βn⋅(Fn)E(R_i) = R_f + \beta_1 \cdot (F_1) + \beta_2 \cdot (F_2) + \ldots + \beta_n \cdot (F_n)E(Ri​)=Rf​+β1​⋅(F1​)+β2​⋅(F2​)+…+βn​⋅(Fn​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts, RfR_fRf​ der risikofreie Zinssatz und βn\beta_nβn​ die Sensitivität des Vermögenswerts gegenüber dem nnn-ten Risikofaktor FnF_nFn​. Durch die Identifizierung und Analyse dieser Faktoren können Investoren potenzielle Risiken und Chancen besser verstehen und gezielt handeln.

Casimir-Effekt

Der Casimir-Effekt ist ein physikalisches Phänomen, das aus der Quantenfeldtheorie hervorgeht und die Wechselwirkung zwischen zwei engen, unpolarisierten, leitenden Platten beschreibt, die im Vakuum angeordnet sind. Diese Platten erzeugen ein quantenmechanisches Vakuum, in dem nur bestimmte Frequenzen von Fluktuationen existieren können. Das Ergebnis ist eine Anziehungskraft zwischen den Platten, die proportional zur Fläche der Platten und umgekehrt proportional zur vierten Potenz des Abstands zwischen ihnen ist. Mathematisch kann die Energie EEE des Casimir-Effekts durch die Formel beschrieben werden:

E=−π2ℏc240Ad4E = -\frac{\pi^2 \hbar c}{240} \frac{A}{d^4}E=−240π2ℏc​d4A​

wobei ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit, AAA die Fläche der Platten und ddd der Abstand zwischen ihnen ist. Der Casimir-Effekt ist nicht nur ein faszinierendes Beispiel für die Auswirkungen der Quantenmechanik, sondern hat auch praktische Anwendungen in der Nanotechnologie und der Entwicklung von mikroskopischen Maschinen.

Termingeschäfte

Ein Forward Contract ist ein Finanzinstrument, das es zwei Parteien ermöglicht, einen zukünftigen Kauf oder Verkauf eines Vermögenswertes zu einem vorher festgelegten Preis (dem Forward-Preis) zu vereinbaren. Diese Verträge werden häufig im Rohstoffhandel, Devisenhandel und bei anderen Finanzinstrumenten verwendet, um sich gegen Preisschwankungen abzusichern. Anders als bei Futures-Kontrakten, die standardisiert sind und an Börsen gehandelt werden, sind Forward Contracts maßgeschneiderte Vereinbarungen, die direkt zwischen den Parteien ausgehandelt werden.

Die grundlegende Struktur eines Forward Contracts kann wie folgt beschrieben werden:

  • Vertragspartner: Die beiden Parteien, die den Vertrag eingehen.
  • Vermögenswert: Der Gegenstand des Vertrags (z.B. Rohstoffe, Währungen).
  • Forward-Preis: Der Preis, der im Voraus festgelegt wird.
  • Lieferdatum: Das Datum, an dem die Lieferung des Vermögenswertes stattfindet.

Forward Contracts sind besonders nützlich, um Risiken zu minimieren und eine gewisse Planungssicherheit hinsichtlich zukünftiger Preisbewegungen zu gewährleisten.

Quantitative Finanzrisikomodellierung

Quantitative Finance Risk Modeling bezieht sich auf die Anwendung mathematischer und statistischer Methoden zur Bewertung und Steuerung von finanziellen Risiken in Märkten und Institutionen. Ziel ist es, potenzielle Verluste zu quantifizieren und Strategien zu entwickeln, um diese Risiken zu minimieren. Zu den häufig verwendeten Modellen gehören Value-at-Risk (VaR), Stress-Testing und Monte-Carlo-Simulationen, die jeweils unterschiedliche Ansätze zur Risikomessung bieten.

Ein zentrales Konzept in der Risikoanalyse ist die Korrelation zwischen verschiedenen Finanzinstrumenten, die oft durch Matrizen wie die Kovarianzmatrix dargestellt werden kann. Mathematisch kann dies durch die Formel

Cov(X,Y)=E[(X−μX)(Y−μY)]Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]Cov(X,Y)=E[(X−μX​)(Y−μY​)]

ausgedrückt werden, wobei Cov(X,Y)Cov(X, Y)Cov(X,Y) die Kovarianz zwischen den Variablen XXX und YYY und EEE den Erwartungswert darstellt. Die präzise Modellierung von Risiken ermöglicht es Finanzinstituten, informierte Entscheidungen zu treffen und ihre Risikopositionen effektiv zu steuern.