Die Mikroökonomie beschäftigt sich mit dem Verhalten von Einzelpersonen und Unternehmen in Bezug auf die Zuteilung von Ressourcen und die Erstellung von Gütern und Dienstleistungen. Ein zentrales Konzept in der Mikroökonomie ist die Elastizität, die misst, wie empfindlich die Nachfrage oder das Angebot eines Gutes auf Änderungen von Preis oder Einkommen reagiert. Es gibt verschiedene Arten von Elastizitäten, wobei die Preis-Elastizität der Nachfrage und die Preis-Elastizität des Angebots die bekanntesten sind.
Die Preis-Elastizität der Nachfrage wird definiert als:
Eine Elastizität größer als 1 zeigt an, dass die Nachfrage elastisch ist, d.h., die Konsumenten reagieren stark auf Preisänderungen. Im Gegensatz dazu zeigt eine Elastizität kleiner als 1, dass die Nachfrage unelastisch ist, was bedeutet, dass die Konsumenten weniger empfindlich auf Preisänderungen reagieren. Die Analyse der Elastizität ist entscheidend für Unternehmen, um Preisstrategien zu entwickeln und den Umsatz zu maximieren.
Die Cournot-Wettbewerb ist ein Modell der Oligopoltheorie, das von dem französischen Ökonomen Antoine Augustin Cournot im Jahr 1838 entwickelt wurde. In diesem Modell konkurrieren Unternehmen um die Menge, die sie produzieren, und gehen davon aus, dass die Menge der anderen Unternehmen konstant bleibt. Jedes Unternehmen maximiert seinen eigenen Gewinn, indem es seine Produktionsmenge wählt, wobei es die Reaktion der Wettbewerber berücksichtigt. Der Gleichgewichtspreis wird durch die gesamte produzierte Menge auf dem Markt bestimmt, was zu einem sogenannten Cournot-Gleichgewicht führt, bei dem kein Unternehmen einen Anreiz hat, seine Produktionsmenge einseitig zu ändern.
Die mathematische Darstellung kann wie folgt aussehen: Sei die Produktionsmenge von Unternehmen 1 und die von Unternehmen 2. Der Marktpreis hängt von der Gesamtmenge ab, typischerweise in der Form , wobei und positive Konstanten sind. In diesem Kontext trifft jedes Unternehmen die Entscheidung, indem es die Reaktionsfunktion des anderen Unternehmens berücksichtigt, was zu einem stabilen Gleichgewicht führt.
Die Stirling-Maschine ist ein thermodynamischer Motor, der durch Temperaturunterschiede zwischen zwei Bereichen arbeitet. Sie nutzt den Stirling-Kreisprozess, um mechanische Arbeit zu erzeugen. Das Prinzip basiert auf der alternierenden Erwärmung und Abkühlung eines Arbeitsmediums, in der Regel eines Gases, das sich in einem geschlossenen System bewegt. Wenn das Gas erhitzt wird, expandiert es und treibt einen Kolben an, während es beim Abkühlen wieder zusammenzieht und eine andere Kolbenbewegung erzeugt.
Die Effizienz einer Stirling-Maschine kann theoretisch bis zu der von Carnot-Maschinen herankommen, was sie zu einem interessanten Konzept für nachhaltige Energieerzeugung macht. Der Vorteil dieser Maschinen liegt in ihrer Flexibilität, da sie mit unterschiedlichen Wärmequellen betrieben werden können, von Solarenergie bis hin zu Biomasse.
Das Ergodic Theorem ist ein fundamentales Konzept in der Ergodentheorie, das sich mit dem langfristigen Verhalten dynamischer Systeme beschäftigt. Es besagt, dass unter bestimmten Bedingungen die Zeitdurchschnittswerte einer Funktion, die über Trajektorien eines Systems betrachtet werden, gleich den Raumdurchschnittswerten sind, die über den Zustand des Systems genommen werden. Formell ausgedrückt, wenn eine geeignete Funktion und ein Ergodischer Operator ist, gilt:
Hierbei ist ein Maß, das die Verteilung der Zustände beschreibt. Dieses Theorem hat weitreichende Anwendungen in verschiedenen wissenschaftlichen Bereichen, einschließlich Thermodynamik, statistischer Mechanik und Informationstheorie. Es verknüpft die Konzepte von Zufall und Ordnung, indem es zeigt, dass das langfristige Verhalten eines Systems nicht von den Anfangsbedingungen abhängt, solange das System ergodisch ist.
Die Physik von organischen Feldeffekttransistoren (OFETs) befasst sich mit der Funktionsweise von Transistoren, die aus organischen Materialien bestehen, typischerweise konjugierten Polymeren oder kleinen Molekülen. Im Gegensatz zu herkömmlichen Siliziumtransistoren nutzen OFETs die elektronischen Eigenschaften organischer Halbleiter, die es ermöglichen, dass elektrische Ladungen durch die Bewegung von Elektronen oder Löchern in einem organischen Material geleitet werden.
Die Funktionsweise eines OFETs basiert auf dem Prinzip der Feldeffektsteuerung, bei dem eine elektrische Spannung am Gate des Transistors eine Ladungsträgerkanal im organischen Material erzeugt oder modifiziert. Dieser Kanal ermöglicht es, die Stromstärke zwischen Source und Drain zu steuern. Die Leistung und Effizienz dieser Transistoren hängen stark von der Qualität des organischen Materials, der Struktur der Moleküle und der Schnittstellen zwischen organischen und anorganischen Materialien ab.
Ein zentrales Konzept in der OFET-Physik ist die Mobilität der Ladungsträger, die oft durch die Gleichung
beschrieben wird, wobei der Drainstrom,
Big Data Analytics Pipelines sind strukturierte Abläufe, die es ermöglichen, große Mengen an Daten effizient zu verarbeiten und zu analysieren. Diese Pipelines bestehen typischerweise aus mehreren Phasen, darunter Datenakquisition, Datenverarbeitung, Datenanalyse und Datenvisualisierung. In der ersten Phase werden Daten aus verschiedenen Quellen gesammelt, darunter IoT-Geräte, Social Media oder Transaktionssysteme. Anschließend erfolgt die Verarbeitung, bei der die Daten bereinigt, transformiert und aggregiert werden, um sie für die Analyse vorzubereiten. In der Analysephase kommen verschiedene Methoden der statistischen Analyse oder Machine Learning zum Einsatz, um wertvolle Erkenntnisse zu gewinnen. Schließlich werden die Ergebnisse in der Visualisierungsphase in verständlicher Form dargestellt, um Entscheidungsprozesse zu unterstützen. Durch die Automatisierung dieser Schritte ermöglichen Big Data Analytics Pipelines eine schnelle und effektive Entscheidungsfindung auf Basis von datengetriebenen Erkenntnissen.
Power Electronics ist ein Fachgebiet der Elektrotechnik, das sich mit der Steuerung und Umwandlung elektrischer Energie befasst. Es umfasst die Entwicklung von Schaltungen und Systemen, die elektrische Energie effizient umwandeln, steuern und verteilen. Zu den typischen Anwendungen gehören beispielsweise Wechselrichter, Gleichrichter und DC-DC-Wandler, die in erneuerbaren Energiesystemen, elektrischen Antrieben und der Stromversorgung verwendet werden. Die Hauptziele der Leistungselektronik sind die Verbesserung der Energieeffizienz, die Reduzierung von Verlusten und die Erhöhung der Zuverlässigkeit der Systeme. Ein zentrales Element sind Halbleiterbauelemente wie Transistoren und Thyristoren, die eine präzise Steuerung des Energieflusses ermöglichen.