StudierendeLehrende

Graph Neural Networks

Graph Neural Networks (GNNs) sind eine spezielle Klasse von neuronalen Netzen, die darauf ausgelegt sind, Daten zu verarbeiten, die in Form von Graphen strukturiert sind. Ein Graph besteht aus Knoten (oder Vertices) und Kanten, die die Beziehungen zwischen diesen Knoten darstellen. GNNs nutzen Nachrichtenaustauschmechanismen, um Informationen zwischen den Knoten zu aggregieren, wodurch sie sich an die Struktur des Graphen anpassen können. Die Hauptidee ist, dass die Repräsentationen der Knoten iterativ aktualisiert werden, basierend auf ihren Nachbarn, was durch die folgende Gleichung dargestellt werden kann:

hv(k)=Aggregate({hu(k−1):u∈N(v)})+hv(k−1)h_v^{(k)} = \text{Aggregate}\left( \{h_u^{(k-1)} : u \in \mathcal{N}(v)\}\right) + h_v^{(k-1)}hv(k)​=Aggregate({hu(k−1)​:u∈N(v)})+hv(k−1)​

Hierbei ist hv(k)h_v^{(k)}hv(k)​ die Repräsentation des Knotens vvv nach kkk Iterationen, und N(v)\mathcal{N}(v)N(v) sind die Nachbarknoten von vvv. GNNs finden Anwendung in diversen Bereichen wie Sozialen Netzwerken, Biologie (z.B. Protein-Interaktionsnetzwerke) und Empfehlungssystemen, da sie eine effektive Möglichkeit bieten, komplexe Beziehungen und

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Mikrostrukturelle Evolution

Die mikrostrukturelle Evolution beschreibt die Veränderungen in der Mikrostruktur eines Materials über die Zeit, insbesondere während physikalischer oder chemischer Prozesse wie Kristallisation, Wärmebehandlung oder mechanischer Verformung. Diese Veränderungen können das Verhalten und die Eigenschaften eines Materials erheblich beeinflussen, darunter Festigkeit, Zähigkeit und Korrosionsbeständigkeit. Die Mikrostruktur umfasst Merkmale wie Korngröße, Phasenverteilung und Kristallorientierung, die durch verschiedene Faktoren wie Temperatur, Druck und chemische Zusammensetzung beeinflusst werden.

Ein Beispiel für mikrostrukturelle Evolution ist die Kornverfeinerung, die bei der Wärmebehandlung von Metallen auftritt: Bei höheren Temperaturen können sich die Körner vergrößern, was die Festigkeit des Materials verringern kann. Umgekehrt kann eine kontrollierte Abkühlung zu einer feinen Kornstruktur führen, die die mechanischen Eigenschaften verbessert. Solche Veränderungen werden oft mathematisch modelliert, um die Beziehung zwischen den Prozessparametern und der resultierenden Mikrostruktur zu quantifizieren.

Superelastische Legierungen

Superelastische Legierungen sind spezielle Materialien, die in der Lage sind, außergewöhnliche elastische Verformungen zu zeigen, ohne dass es zu dauerhaften Deformationen kommt. Diese Legierungen, häufig auf Basis von Nickel-Titan (NiTi) hergestellt, nutzen den Effekt der martensitischen Transformation, um bei bestimmten Temperaturen und Belastungen ihre Form zu verändern und bei Entlastung wieder zurückzukehren. Sie können sich bis zu 8% ihrer ursprünglichen Länge dehnen, was sie ideal für Anwendungen in der Medizintechnik, wie z.B. bei Stents oder Zahnspangen, macht.

Ein weiteres bemerkenswertes Merkmal ist die Fähigkeit dieser Legierungen, bei Temperaturen unterhalb einer bestimmten Schwelle (der sogenannten Martensit-Temperatur) eine sehr hohe Flexibilität zu zeigen. Diese Eigenschaften machen sie nicht nur für technische Anwendungen attraktiv, sondern auch für den Einsatz in der Luft- und Raumfahrt sowie in der Robotik. Die physikalischen Grundlagen der Superelastizität können durch die Gleichung σ=E⋅ε\sigma = E \cdot \varepsilonσ=E⋅ε beschrieben werden, wobei σ\sigmaσ die Spannung, EEE der Elastizitätsmodul und ε\varepsilonε die Dehnung ist.

Rationale Erwartungen

Der Begriff Rational Expectations (Rationale Erwartungen) bezieht sich auf eine ökonomische Theorie, die besagt, dass Individuen und Unternehmen ihre Erwartungen über zukünftige wirtschaftliche Bedingungen auf der Grundlage aller verfügbaren Informationen und ihrer eigenen Erfahrungen bilden. Diese Theorie geht davon aus, dass die Akteure im Markt nicht systematisch irren, sondern ihre Vorhersagen im Durchschnitt korrekt sind. Das bedeutet, dass sie zukünftige Ereignisse, wie Inflation oder Wirtschaftswachstum, nicht einfach zufällig oder naiv prognostizieren, sondern strategisch und informiert handeln.

Ein zentrales Element dieser Theorie ist, dass die Erwartungen der Wirtschaftssubjekte oft das tatsächliche wirtschaftliche Verhalten beeinflussen. Wenn beispielsweise die Akteure glauben, dass die Inflation steigen wird, könnten sie ihre Preise und Löhne entsprechend anpassen, was wiederum die Inflation tatsächlich beeinflussen kann. Dies führt zu einem dynamischen Zusammenspiel zwischen Erwartungen und realen wirtschaftlichen Ergebnissen, das in der Makroökonomie von großer Bedeutung ist.

Zusammengefasst lässt sich sagen, dass die Theorie der rationalen Erwartungen die Annahme beinhaltet, dass wirtschaftliche Akteure in der Lage sind, zukünftige wirtschaftliche Bedingungen realistisch zu bewerten und entsprechend zu handeln, was wichtige Implikationen für die Wirtschaftspolitik hat.

Zelluläre Bioinformatik

Cellular Bioinformatics ist ein interdisziplinäres Forschungsfeld, das sich mit der Analyse und Interpretation von biologischen Daten auf zellulärer Ebene beschäftigt. Es kombiniert Techniken aus der Bioinformatik, Molekularbiologie und Systembiologie, um komplexe biologische Systeme zu verstehen. Durch den Einsatz von Computermodellen und Algorithmen werden große Datenmengen, wie Genomsequenzen oder Proteininteraktionen, verarbeitet und visualisiert. Ziel ist es, Muster und Zusammenhänge zu identifizieren, die für die Zellfunktion, Krankheitsmechanismen oder Therapieansätze von Bedeutung sind. Zu den häufig verwendeten Methoden gehören Maschinelles Lernen, Datenbankabfragen und Netzwerkanalysen, die es den Forschern ermöglichen, tiefere Einblicke in die zellulären Prozesse zu gewinnen.

Gaussian Process

Ein Gaussian Process (GP) ist ein leistungsfähiges statistisches Modell, das in der maschinellen Lern- und Statistik-Community weit verbreitet ist. Er beschreibt eine Menge von Zufallsvariablen, die alle einer multivariaten Normalverteilung folgen. Ein GP wird oft verwendet, um Funktionen zu modellieren, wobei jede Funktion durch eine Verteilung von möglichen Funktionen beschrieben wird. Mathematisch wird ein GP durch seine Mittelwert- und Kovarianzfunktion definiert:

f(x)∼GP(m(x),k(x,x′))f(x) \sim \mathcal{GP}(m(x), k(x, x'))f(x)∼GP(m(x),k(x,x′))

Hierbei ist m(x)m(x)m(x) der Mittelwert und k(x,x′)k(x, x')k(x,x′) die Kovarianzfunktion, die die Beziehung zwischen den Eingabepunkten xxx und x′x'x′ beschreibt. GPs sind besonders nützlich für Regression und Optimierung, da sie nicht nur Vorhersagen liefern, sondern auch Unsicherheiten quantifizieren können, was sie zu einer idealen Wahl für viele Anwendungen in der Wissenschaft und Industrie macht.

Heavy-Light-Zerlegung

Die Heavy-Light Decomposition ist eine Technik zur effizienten Zerlegung von Bäumen in zwei Typen von Kanten: schwere und leichte Kanten. Bei dieser Methode wird jeder Knoten des Baumes in zwei Kategorien eingeteilt, wobei die schweren Kanten diejenigen sind, die zu den untergeordneten Knoten führen, die mehr als die Hälfte der Größe des gesamten Teilbaums haben. Die leichten Kanten sind alle anderen Kanten, die nicht in die schwere Kategorie fallen. Dieses Verfahren ermöglicht es, Pfade im Baum effizient zu verarbeiten, indem man den Baum in eine Sammlung von Pfaden zerlegt, die leichter zu handhaben sind. Die Hauptanwendung der Heavy-Light Decomposition liegt in der Effizienzsteigerung bei der Bearbeitung von Anfragen, die sich auf die Baumstruktur beziehen, wie z.B. das Finden von Knoten, das Berechnen von Pfadlängen oder das Aggregieren von Werten entlang eines Pfades.

Diese Zerlegung ist besonders nützlich in Kombination mit Datenstrukturen wie Segmentbäumen oder Fenwick-Bäumen, was die Komplexität der Anfragen auf O(log⁡n)O(\log n)O(logn) reduziert, wobei nnn die Anzahl der Knoten im Baum ist.