StudierendeLehrende

Minsky Moment

Ein Minsky Moment beschreibt einen plötzlichen und dramatischen Wandel in der Wahrnehmung der Stabilität eines Finanzmarktes, der oft zu einem abrupten Zusammenbruch führt. Der Begriff wurde nach dem Ökonomen Hyman Minsky benannt, der argumentierte, dass Finanzmärkte in einem Zyklus von Stabilität und Instabilität operieren. In der Phase der stabilen Zeiten neigen Investoren dazu, höhere Risiken einzugehen, was zu übermäßiger Verschuldung führt. Wenn jedoch das Vertrauen schwindet, kommt es zu einem raschen Verkaufsdruck, der oft in einer Finanzkrise endet. Ein Minsky Moment verdeutlicht die Verwundbarkeit von Märkten, die auf übermäßige Spekulation und Schuldenakkumulation basieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Lidar-Kartierung

Lidar Mapping ist eine fortschrittliche Technologie, die Laserstrahlen verwendet, um präzise, dreidimensionale Karten von Landschaften und Objekten zu erstellen. Der Begriff „Lidar“ steht für „Light Detection and Ranging“ und beschreibt den Prozess, bei dem Laserimpulse ausgesendet werden, die von Oberflächen reflektiert werden. Die Zeit, die der Laser benötigt, um zum Sensor zurückzukehren, ermöglicht die Berechnung der Entfernung, was zu einer genauen räumlichen Darstellung führt. Diese Technik wird häufig in der Geodäsie, Forstwirtschaft, Stadtplanung und Umweltschutz eingesetzt.

Die gesammelten Daten können in Form von Punktwolken dargestellt werden, die eine Vielzahl von Anwendungen ermöglichen, einschließlich der Analyse von Geländeformen, der Erfassung von Vegetationsstrukturen und der Überwachung von Veränderungen in der Landschaft. Lidar Mapping bietet eine hohe Genauigkeit und Effizienz im Vergleich zu traditionellen Kartierungsmethoden, da es große Flächen in kurzer Zeit abdecken kann.

Banachraum

Ein Banachraum ist ein vollständiger normierter Vektorraum, das bedeutet, dass die Elemente des Raumes (Vektoren) eine Norm haben, die die Größe oder den Abstand zwischen den Vektoren misst. Die Norm ist eine Funktion ∥⋅∥:V→R\| \cdot \| : V \rightarrow \mathbb{R}∥⋅∥:V→R, die die folgenden Eigenschaften erfüllt:

  1. Positivität: ∥x∥≥0\| x \| \geq 0∥x∥≥0 und ∥x∥=0\| x \| = 0∥x∥=0 nur, wenn x=0x = 0x=0.
  2. Homogenität: ∥αx∥=∣α∣⋅∥x∥\| \alpha x \| = |\alpha| \cdot \| x \|∥αx∥=∣α∣⋅∥x∥ für alle Skalare α\alphaα.
  3. Dreiecksungleichung: ∥x+y∥≤∥x∥+∥y∥\| x + y \| \leq \| x \| + \| y \|∥x+y∥≤∥x∥+∥y∥ für alle x,y∈Vx, y \in Vx,y∈V.

Ein Banachraum ist vollständig, wenn jede Cauchy-Folge in diesem Raum konvergiert, das heißt, wenn für jede Folge (xn)(x_n)(xn​) in VVV, die die Bedingung ∥xn−xm∥<ϵ\| x_n - x_m \| < \epsilon∥xn​−xm​∥<ϵ für n,mn, mn,m groß genug erfüllt, ein Element x∈Vx \in Vx∈V existiert, so dass $ x

Bohr-Magneton

Das Bohr Magneton ist eine physikalische Konstante, die die magnetischen Eigenschaften von Elektronen beschreibt. Es wird als Maßeinheit für den magnetischen Moment eines Elektrons in einem Atom verwendet und ist besonders wichtig in der Atomphysik und der Quantenmechanik. Das Bohr Magneton wird durch die folgende Formel definiert:

μB=eℏ2me\mu_B = \frac{e \hbar}{2m_e}μB​=2me​eℏ​

Hierbei steht eee für die Elementarladung, ℏ\hbarℏ für das reduzierte Plancksche Wirkungsquantum und mem_eme​ für die Masse des Elektrons. Der Wert des Bohr Magnetons beträgt etwa 9.274×10−24 J/T9.274 \times 10^{-24} \, \text{J/T}9.274×10−24J/T (Joule pro Tesla). Das Bohr Magneton ist entscheidend für das Verständnis von Phänomenen wie dem Zeeman-Effekt, bei dem sich die Energieniveaus eines Atoms in einem Magnetfeld aufspalten.

Rayleigh-Streuung

Rayleigh-Streuung ist ein physikalisches Phänomen, das auftritt, wenn Licht auf Partikel trifft, die viel kleiner sind als die Wellenlänge des Lichts. Diese Streuung führt dazu, dass Licht in verschiedene Richtungen abgelenkt wird. Besonders bemerkenswert ist, dass die Intensität der gestreuten Strahlung invers proportional zur vierten Potenz der Wellenlänge ist, was mathematisch als

I∝1λ4I \propto \frac{1}{\lambda^4}I∝λ41​

ausgedrückt werden kann, wobei III die Intensität der gestreuten Strahlung und λ\lambdaλ die Wellenlänge des Lichts ist. Dies erklärt, warum der Himmel blau erscheint: Kurzwelliges Licht (blau) wird stärker gestreut als langwelliges Licht (rot). Rayleigh-Streuung spielt auch eine wichtige Rolle in verschiedenen wissenschaftlichen und technischen Anwendungen, wie in der Atmosphärenforschung und der optischen Kommunikation.

Dynamische stochastische allgemeine Gleichgewichtsmodelle

Dynamic Stochastic General Equilibrium Models (DSGE-Modelle) sind eine Klasse von ökonometrischen Modellen, die verwendet werden, um das Verhalten von Wirtschaftssystemen über die Zeit zu analysieren. Diese Modelle kombinieren dynamische Elemente, die die zeitliche Entwicklung von Variablen berücksichtigen, mit stochastischen Elementen, die Unsicherheiten und zufällige Schocks einbeziehen. DSGE-Modelle basieren auf mikroökonomischen Fundamenten und beschreiben, wie Haushalte und Unternehmen Entscheidungen unter Berücksichtigung von zukünftigen Erwartungen treffen.

Ein typisches DSGE-Modell enthält Gleichungen, die das Verhalten von Konsum, Investitionen, Produktion und Preisen darstellen. Die Verwendung von Rationalen Erwartungen ist ein zentrales Merkmal dieser Modelle, was bedeutet, dass die Akteure in der Wirtschaft ihre Erwartungen über zukünftige Ereignisse basierend auf allen verfügbaren Informationen rational bilden. DSGE-Modelle werden häufig zur Analyse von geldpolitischen Maßnahmen, fiskalischen Politiken und zur Vorhersage von wirtschaftlichen Entwicklungen eingesetzt.

Dynamische stochastische allgemeine Gleichgewichtstheorie

Dynamic Stochastic General Equilibrium (DSGE) ist ein wirtschaftswissenschaftliches Modell, das verwendet wird, um die Dynamik von Volkswirtschaften über die Zeit zu analysieren und zu verstehen. Bei DSGE-Modellen wird angenommen, dass die Wirtschaft von verschiedenen stochastischen Schocks (z. B. technologische Veränderungen, Politikänderungen) beeinflusst wird, die zufällig auftreten können. Diese Modelle integrieren sowohl dynamische als auch stochastische Elemente, was bedeutet, dass sie die Zeitdimension berücksichtigen und gleichzeitig Unsicherheiten in der Wirtschaft abbilden.

Die Grundstruktur eines DSGE-Modells umfasst typischerweise:

  • Haushalte, die Entscheidungen über Konsum und Ersparnis treffen,
  • Unternehmen, die Produktionsentscheidungen basierend auf Kosten und Erträgen treffen,
  • Regierungen, die fiskalpolitische Entscheidungen treffen.

Mathematisch werden diese Modelle häufig durch Gleichungen dargestellt, die das Verhalten der verschiedenen Akteure in der Wirtschaft und ihre Interaktionen beschreiben. Ein einfaches Beispiel für eine Gleichung könnte sein:

Yt=AtKtαLt1−αY_t = A_t K_t^\alpha L_t^{1-\alpha}Yt​=At​Ktα​Lt1−α​

Hierbei ist YtY_tYt​ die Produktionsmenge, AtA_tAt​ der technologische Fortschritt, KtK_tKt​ der Kapitalstock und LtL_tLt​ die Arbeit. DSG