StudierendeLehrende

Nusselt Number

Die Nusselt-Zahl (Nu) ist ein dimensionsloses Maß für den Wärmeübergang in Fluiden und spielt eine entscheidende Rolle in der Wärmeübertragungstheorie. Sie beschreibt das Verhältnis zwischen dem konvektiven Wärmeübergang und dem leitenden Wärmeübergang in einem Fluid. Mathematisch wird sie definiert als:

Nu=hLk\text{Nu} = \frac{hL}{k}Nu=khL​

wobei hhh der Wärmeübergangskoeffizient, LLL eine charakteristische Länge und kkk die Wärmeleitfähigkeit des Fluids ist. Eine hohe Nusselt-Zahl deutet auf einen effektiven konvektiven Wärmeübergang hin, während eine niedrige Nusselt-Zahl auf einen dominierenden leitenden Wärmeübergang hinweist. Diese Zahl ist besonders wichtig in Bereichen wie der Thermodynamik, der Ingenieurwissenschaft und der Klimatisierungstechnik, da sie hilft, die Effizienz von Wärmeübertragungsprozessen zu bewerten und zu optimieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Bürstenloser Gleichstrommotor

Ein Brushless DC Motor (BLDC) ist ein Elektromotor, der ohne Bürsten funktioniert, was ihn von herkömmlichen Gleichstrommotoren unterscheidet. Diese Motoren verwenden elektronische Steuerungen, um den Rotor zu drehen, was die Effizienz erhöht und den Wartungsbedarf verringert. Im Gegensatz zu Bürstenmotoren, bei denen die mechanische Reibung der Bürsten zu einem Energieverlust führt, ermöglicht der bürstenlose Aufbau eine höhere Lebensdauer und geringeren Verschleiß.

Die Hauptkomponenten eines BLDC-Motors sind der Stator, der Permanentmagnet-Rotor und der elektronische Regler. Der Stator erzeugt ein rotierendes Magnetfeld, das den Rotor antreibt, während der Regler die Stromzufuhr steuert und sicherstellt, dass die Magnetfelder synchronisiert sind. Diese Motoren finden breite Anwendung in verschiedenen Bereichen, wie z.B. in Elektrofahrzeugen, Drohnen und Haushaltsgeräten, aufgrund ihrer hohen Effizienz und Leistungsdichte.

Laplacian-Matrix

Die Laplacian-Matrix ist ein zentrales Konzept in der Graphentheorie und wird verwendet, um die Struktur eines Graphen mathematisch darzustellen. Sie wird definiert als L=D−AL = D - AL=D−A, wobei DDD die Diagonal-Matrix der Knotengrade und AAA die Adjazenzmatrix des Graphen ist. Die Diagonal-Matrix DDD enthält die Grade jedes Knotens, also die Anzahl der Kanten, die an diesem Knoten enden. Die Laplacian-Matrix hat einige bemerkenswerte Eigenschaften: Sie ist symmetrisch, positiv semidefinit und ihre Eigenwerte geben wichtige Informationen über die Struktur des Graphen, wie z.B. die Anzahl der verbundenen Komponenten. In der Anwendungen findet die Laplacian-Matrix Verwendung in Bereichen wie dem maschinellen Lernen, der Bildverarbeitung und der Netzwerk-Analyse, wo sie oft zur Clusterbildung und zur Analyse von Netzwerken eingesetzt wird.

Mundell-Fleming-Modell

Das Mundell-Fleming-Modell ist ein wirtschaftswissenschaftliches Modell, das die Wechselwirkungen zwischen dem Gütermarkt und dem Geldmarkt in einer offenen Volkswirtschaft beschreibt. Es erweitert das IS-LM-Modell, indem es die Einflüsse von Außenhandel und Kapitalbewegungen berücksichtigt. Das Modell basiert auf der Annahme, dass es drei Hauptvariablen gibt: den Zinssatz, die Wechselkurse und das nationale Einkommen.

Das Modell unterscheidet zwischen zwei extremen Regimes: dem festen Wechselkurs und dem flexiblen Wechselkurs. Bei einem festen Wechselkurs ist die Geldpolitik weniger effektiv, weil die Zentralbank eingreifen muss, um den Wechselkurs stabil zu halten. Im Gegensatz dazu kann die Geldpolitik bei einem flexiblen Wechselkurs effektiver eingesetzt werden, um das nationale Einkommen zu steuern. Das Mundell-Fleming-Modell ist besonders nützlich für die Analyse von wirtschaftlichen Schocks und deren Auswirkungen auf die Geld- und Fiskalpolitik in offenen Volkswirtschaften.

Arrow-Debreu-Modell

Das Arrow-Debreu-Modell ist ein fundamentales Konzept in der Mikroökonomie, das die Bedingungen für ein allgemeines Gleichgewicht in einer Volkswirtschaft beschreibt. Es wurde von den Ökonomen Kenneth Arrow und Gérard Debreu in den 1950er Jahren entwickelt und basiert auf der Annahme, dass alle Märkte vollständig und perfekt sind. In diesem Modell existieren eine Vielzahl von Gütern und Dienstleistungen, die zu verschiedenen Zeitpunkten und unter verschiedenen Zuständen der Natur gehandelt werden können. Die zentrale Idee ist, dass jedes Individuum und jedes Unternehmen Entscheidungen trifft, um ihren Nutzen oder Gewinn zu maximieren, wobei sie die Preise als gegeben betrachten.

Das Modell stellt auch die Existenz eines Gleichgewichts dar, bei dem Angebot und Nachfrage für alle Güter übereinstimmen. Mathematisch wird dies oft als Lösung eines Systems von Gleichungen dargestellt, wobei die Preise als Funktion der Präferenzen der Konsumenten und der Produktionsmöglichkeiten der Unternehmen fungieren. Ein Schlüsselkonzept des Modells ist die Vollständigkeit der Märkte, was bedeutet, dass für jede zukünftige Unsicherheit ein Markt existiert, auf dem diese gehandelt werden kann.

Erdős-Kac-Theorem

Das Erdős-Kac-Theorem ist ein zentrales Resultat der analytischen Zahlentheorie, das die Verteilung der Anzahl der Primfaktoren von natürlichen Zahlen untersucht. Es besagt, dass die Anzahl der Primfaktoren (mit Vielfachheiten) einer zufällig gewählten natürlichen Zahl nnn asymptotisch einer Normalverteilung folgt, wenn nnn groß ist. Genauer gesagt, wenn N(n)N(n)N(n) die Anzahl der Primfaktoren von nnn ist, dann gilt:

N(n)−log⁡nlog⁡n→dN(0,1)\frac{N(n) - \log n}{\sqrt{\log n}} \xrightarrow{d} N(0, 1)logn​N(n)−logn​d​N(0,1)

Das bedeutet, dass der Ausdruck N(n)−log⁡nlog⁡n\frac{N(n) - \log n}{\sqrt{\log n}}logn​N(n)−logn​ für große nnn in Verteilung gegen eine Standardnormalverteilung konvergiert. Dies zeigt die tiefe Verbindung zwischen Zahlentheorie und Wahrscheinlichkeitstheorie und unterstreicht die Regelmäßigkeiten in der Verteilung der Primzahlen. Das Theorem wurde unabhängig von Paul Erdős und Mark Kac in den 1930er Jahren formuliert und hat weitreichende Anwendungen in der Zahlentheorie und anderen Bereichen der Mathematik.

Riemannsche Zeta-Funktion

Die Riemannsche Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt, insbesondere bei der Untersuchung der Verteilung der Primzahlen. Sie wird üblicherweise durch die Formel definiert:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

für komplexe Zahlen sss mit einem Realteil größer als 1. Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, mit Ausnahme von s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein bemerkenswertes Ergebnis ist die Riemann-Hypothese, die besagt, dass alle nicht-trivialen Nullstellen der Zeta-Funktion eine Realteil von 12\frac{1}{2}21​ haben. Die Zeta-Funktion verbindet viele Bereiche der Mathematik, einschließlich der Kombinatorik und der mathematischen Physik, und hat bedeutende Anwendungen in der modernen Zahlentheorie.