StudierendeLehrende

Noether’S Theorem

Das Noether-Theorem, benannt nach der Mathematikerin Emmy Noether, stellt einen tiefen Zusammenhang zwischen Symmetrien und Erhaltungssätzen in der Physik her. Es besagt, dass jede kontinuierliche Symmetrie eines physikalischen Systems eine entsprechende Erhaltungsgröße existiert. Zum Beispiel führt die Invarianz der Lagrange-Funktion unter Zeitverschiebungen zur Erhaltung der Energie, während die Invarianz unter räumlichen Verschiebungen zur Erhaltung des Impulses führt. Mathematisch formuliert wird dies oft durch die Beziehung zwischen der Variation der Lagrange-Funktion und den Ableitungen der entsprechenden Erhaltungsgrößen dargestellt. Noethers Theorem hat nicht nur in der klassischen Mechanik, sondern auch in der Quantenmechanik und der Feldtheorie bedeutende Anwendungen gefunden und ist ein grundlegendes Konzept in der theoretischen Physik.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Prim’S Mst

Der Algorithmus Prim's Minimum Spanning Tree (MST) ist ein effizienter Verfahren zur Bestimmung eines minimalen Spannbaums in einem gewichteten, zusammenhängenden Graphen. Ein minimaler Spannbaum ist ein Teilgraph, der alle Knoten des ursprünglichen Graphen verbindet, ohne Zyklen zu bilden, und dabei die Summe der Kantengewichte minimiert. Der Algorithmus beginnt mit einem beliebigen Startknoten und fügt iterativ die Kante mit dem kleinsten Gewicht hinzu, die einen neuen Knoten verbindet. Dieser Vorgang wird wiederholt, bis alle Knoten im Spannbaum enthalten sind. Prim's Algorithmus hat eine Zeitkomplexität von O(Elog⁡V)O(E \log V)O(ElogV), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist.

Transfermatrix

Die Transfer Matrix ist ein wesentliches Konzept in der Physik und Ingenieurwissenschaft, das zur Analyse von Systemen verwendet wird, die über verschiedene Zustände oder Schichten verteilt sind. Sie ermöglicht es, die Wechselwirkungen zwischen diesen Zuständen oder Schichten mathematisch zu beschreiben. Im Wesentlichen stellt die Transfer Matrix die Beziehung zwischen den Zuständen vor und nach einem bestimmten System dar. Mathematisch kann dies oft in Form einer Matrix TTT ausgedrückt werden, die die Transformation eines Zustands v\mathbf{v}v beschreibt:

v′=T⋅v\mathbf{v}' = T \cdot \mathbf{v}v′=T⋅v

Hierbei ist v′\mathbf{v}'v′ der neue Zustand nach der Transformation. Die Anwendung der Transfer Matrix findet sich häufig in der Quantenmechanik, Optik und Materialwissenschaft, wo sie verwendet wird, um beispielsweise die Reflexion und Transmission von Wellen an Grenzflächen zu untersuchen. Wesentlich ist, dass die Transfer Matrix es ermöglicht, komplexe Systeme durch die Zerlegung in einfachere Teilprobleme zu analysieren.

Mikrocontroller-Takt

Ein Microcontroller Clock ist ein zentraler Bestandteil eines Mikrocontrollers, der die Taktfrequenz definiert, mit der der Mikrocontroller seine Operationen ausführt. Diese Taktfrequenz wird in Hertz (Hz) gemessen und bestimmt, wie viele Befehle der Mikrocontroller pro Sekunde verarbeiten kann. Typische Werte reichen von einigen Kilohertz (kHz) bis zu mehreren Megahertz (MHz).

Die Taktquelle kann entweder ein interner Oszillator oder ein externer Quarz sein, wobei letzterer oft eine höhere Genauigkeit bietet. Der Takt hat einen entscheidenden Einfluss auf die Leistungsaufnahme und die Reaktionsgeschwindigkeit des Systems. Bei der Gestaltung von Mikrocontrollersystemen ist es wichtig, die richtige Taktfrequenz auszuwählen, um ein optimales Gleichgewicht zwischen Leistung und Energieverbrauch zu erreichen.

Währungsrisiko

Foreign Exchange Risk (auch bekannt als Währungsrisiko) bezieht sich auf das Risiko, das Unternehmen und Investoren eingehen, wenn sie mit ausländischen Währungen handeln. Dieses Risiko entsteht, weil sich Wechselkurse ständig ändern und somit den Wert von Vermögenswerten, Verbindlichkeiten und Einnahmen in einer anderen Währung beeinflussen können. Zum Beispiel kann ein Unternehmen, das in Euro exportiert, Verluste erleiden, wenn der Euro gegenüber der Heimatwährung an Wert verliert.

Es gibt verschiedene Arten von Foreign Exchange Risk:

  1. Transaktionsrisiko: Dies betrifft die Auswirkungen von Wechselkursänderungen auf bereits vereinbarte Transaktionen, die in einer anderen Währung denominierte sind.
  2. Translationsrisiko: Dies betrifft die Auswirkungen von Wechselkursänderungen auf den Wert ausländischer Vermögenswerte und Verbindlichkeiten in der Bilanz eines Unternehmens.
  3. Ökonomisches Risiko: Dies bezieht sich auf die langfristigen Auswirkungen von Wechselkursänderungen auf die Wettbewerbsfähigkeit eines Unternehmens.

Um sich gegen Foreign Exchange Risk abzusichern, nutzen Unternehmen häufig Finanzinstrumente wie Hedging oder Währungsderivate.

Graphfärbung Chromatisches Polynom

Der Chromatische Polynom eines Graphen ist ein wichtiges Konzept in der Graphentheorie, das angibt, wie viele Möglichkeiten es gibt, die Knoten eines Graphen mit kkk Farben so zu färben, dass benachbarte Knoten unterschiedliche Farben erhalten. Das Chromatische Polynom wird oft mit P(G,k)P(G, k)P(G,k) bezeichnet, wobei GGG der Graph und kkk die Anzahl der verwendeten Farben ist.

Die Berechnung des Chromatischen Polynoms erfolgt meist durch rekursive Methoden oder durch spezielle Techniken wie das Entfernen von Knoten und Kanten. Ein grundlegendes Ergebnis ist, dass für einen Graphen GGG und einen Knoten vvv die Beziehung

P(G,k)=P(G−v,k)−deg⁡(v)⋅P(G/v,k)P(G, k) = P(G - v, k) - \deg(v) \cdot P(G / v, k)P(G,k)=P(G−v,k)−deg(v)⋅P(G/v,k)

gilt, wobei deg⁡(v)\deg(v)deg(v) den Grad des Knotens vvv darstellt. Das Chromatische Polynom kann auch zur Bestimmung der chromatischen Zahl eines Graphen verwendet werden, die die minimale Anzahl von Farben angibt, die benötigt wird, um den Graphen korrekt zu färben.

Markov-Kette Gleichgewichtszustand

Ein Markov Chain Steady State beschreibt einen Zustand in einer Markov-Kette, in dem die Wahrscheinlichkeitsverteilung über die Zustände stabil bleibt und sich nicht mehr ändert, egal wie oft der Prozess fortgesetzt wird. Wenn ein System in diesem Gleichgewichtszustand ist, bleibt die Wahrscheinlichkeit, sich in einem bestimmten Zustand zu befinden, konstant über die Zeit. Mathematisch ausgedrückt, wenn π\piπ die stationäre Verteilung ist und PPP die Übergangsmatrix darstellt, gilt:

πP=π\pi P = \piπP=π

Hierbei repräsentiert π\piπ die Wahrscheinlichkeiten für die einzelnen Zustände, und die Gleichung besagt, dass die Verteilung nach einem Übergang nicht mehr verändert wird. Ein wichtiger Aspekt von Markov-Ketten ist, dass sie unter bestimmten Bedingungen, wie z.B. Erreichbarkeit und Aperiodizität, immer einen stabilen Zustand erreichen. In der Praxis finden diese Konzepte Anwendung in Bereichen wie Warteschlangentheorie, Ökonomie und Maschinelles Lernen.