StudierendeLehrende

Bargaining Nash

Der Begriff Bargaining Nash bezieht sich auf das Konzept des Verhandelns in der Spieltheorie, das von John Nash entwickelt wurde. Es beschreibt die Bedingungen, unter denen zwei oder mehr Parteien einvernehmlich zu einer Lösung gelangen, die für alle Beteiligten vorteilhaft ist. In diesem Kontext wird oft das sogenannte Nash-Gleichgewicht verwendet, das eine Situation beschreibt, in der kein Spieler einen Anreiz hat, seine Strategie einseitig zu ändern, da dies zu einem schlechteren Ergebnis führen würde.

Ein zentrales Element ist die Effizienz, die sicherstellt, dass keine weiteren Gewinne mehr erzielt werden können, ohne dass jemand anders schlechter gestellt wird. Die Verhandlungsposition der Parteien wird dabei durch ihre Ausscheidungspunkte bestimmt, also die Ergebnisse, die sie im Falle eines Scheiterns der Verhandlungen erzielen könnten. Das Nash-Verhandlungstheorem zeigt, dass unter bestimmten Bedingungen die Verhandlungslösungen stabil sind und dass die Parteien rational handeln, um ihre Nutzenmaximierung zu erreichen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

PID-Gewinnanpassung

PID Gain Scheduling ist eine Technik, die in der Regelungstechnik verwendet wird, um die Leistung von PID-Reglern (Proportional-Integral-Derivativ-Regler) unter variierenden Betriebsbedingungen zu optimieren. Bei dieser Methode werden die Reglerparameter KpK_pKp​ (Proportional), KiK_iKi​ (Integral) und KdK_dKd​ (Derivativ) dynamisch angepasst, um den unterschiedlichen Anforderungen des Systems gerecht zu werden. Dies ist besonders nützlich in Anwendungen, bei denen das Systemverhalten stark von externen Faktoren wie Geschwindigkeit, Temperatur oder Druck abhängt.

Die Anpassung erfolgt in der Regel mithilfe von Vorlauf- oder Rücklaufkurven, die die Beziehung zwischen den Reglerparametern und dem aktuellen Betriebszustand darstellen. Der Regler wechselt zwischen verschiedenen Satz von PID-Gewinnen, je nach dem aktuellen Zustand, um eine optimale Regelung zu gewährleisten. Dadurch wird die Reaktionszeit verbessert und die Stabilität des Systems erhöht, was zu einer effizienteren und zuverlässigeren Steuerung führt.

Neural Manifold

Ein Neural Manifold ist ein Konzept aus der modernen maschinellen Lernforschung, das sich auf die Struktur der Datenverteilung in hochdimensionalen Räumen bezieht, die von neuronalen Netzen erlernt werden. Diese Mannigfaltigkeit beschreibt, wie Datenpunkte in einem niedrigdimensionalen Raum organisiert sind, während sie in einem hochdimensionalen Raum existieren.

In einfachen Worten kann man sich das so vorstellen: Wenn wir ein neuronales Netz trainieren, lernt es, die zugrunde liegende Struktur der Daten zu erkennen und zu abstrahieren. Diese Struktur bildet eine Mannigfaltigkeit, die oft die Form von glatten, gekrümmten Flächen hat, die die Beziehungen zwischen den Datenpunkten darstellen.

Mathematisch betrachtet, kann man die Mannigfaltigkeit als eine Funktion f:Rn→Rmf: \mathbb{R}^n \rightarrow \mathbb{R}^mf:Rn→Rm definieren, wobei nnn die Dimension des Eingaberaums und mmm die Dimension des Zielraums ist. Die Herausforderung besteht darin, diese Mannigfaltigkeit zu modellieren und zu verstehen, um die Leistung von neuronalen Netzen weiter zu verbessern und ihre Interpretierbarkeit zu erhöhen.

Dielektrischer Durchbruchsschwellenwert

Der Dielectric Breakdown Threshold bezeichnet die Spannung, bei der ein Isoliermaterial seine Fähigkeit verliert, elektrischen Strom zu blockieren, und stattdessen leitend wird. Dieser Effekt tritt auf, wenn die elektrische Feldstärke, die durch das Material wirkt, einen kritischen Wert überschreitet, was zu einer plötzlichen Zunahme des Stromflusses führt. Der Breakdown kann durch verschiedene Faktoren beeinflusst werden, einschließlich der Materialart, der Temperatur und der Verunreinigungen im Material.

Die elektrische Feldstärke EEE, die benötigt wird, um den Durchbruch zu erreichen, wird oft in Volt pro Meter (V/m) angegeben. Es ist wichtig zu beachten, dass der Dielectric Breakdown Threshold nicht nur von den physikalischen Eigenschaften des Materials abhängt, sondern auch von der Art der angelegten Spannung (z. B. Wechsel- oder Gleichspannung). Ein Beispiel für die Anwendung ist in Hochspannungsleitungen, wo das Verständnis dieses Schwellenwertes entscheidend für die Sicherheit und Effizienz der Stromübertragung ist.

Push-Relabel-Algorithmus

Der Push-Relabel Algorithmus ist ein effizienter Algorithmus zur Lösung des Maximum-Flow-Problems in Flussnetzwerken. Er basiert auf der Idee, dass Fluss durch das Netzwerk nicht nur durch Push-Operationen, bei denen Fluss von einem Knoten zu einem benachbarten Knoten verschoben wird, sondern auch durch Relabel-Operationen, bei denen die Höhe eines Knotens erhöht wird, um neue Flussmöglichkeiten zu eröffnen, verwaltet wird.

Ein wichtiger Aspekt des Algorithmus ist die Verwendung von Höhenwerten, die jedem Knoten zugeordnet sind und sicherstellen, dass der Fluss in die richtige Richtung fließt. Zu Beginn wird der Fluss auf null gesetzt, und die Quelle erhält eine Höhe, die gleich der Anzahl der Knoten im Netzwerk ist. Der Algorithmus arbeitet, bis keine Push-Operationen mehr möglich sind, was bedeutet, dass der maximale Fluss erreicht wurde. Der Vorteil des Push-Relabel-Algorithmus liegt in seiner Fähigkeit, in verschiedenen Flusskonfigurationen schnell zu konvergieren und komplexe Netzwerke effizient zu bearbeiten.

Stringtheorie-Dimensionen

Die Stringtheorie ist ein theoretisches Rahmenwerk in der Physik, das versucht, die fundamentalen Bausteine des Universums als eindimensionale "Strings" anstelle von punktförmigen Teilchen zu beschreiben. Diese Strings können in verschiedenen Schwingungsmodi existieren, und jede Schwingungsart entspricht einem unterschiedlichen Teilchen. Ein zentrales Konzept der Stringtheorie ist die Annahme, dass das Universum nicht nur die vertrauten drei Raumdimensionen und eine Zeitdimension hat, sondern zusätzliche Dimensionen, die für uns nicht direkt wahrnehmbar sind.

In vielen Versionen der Stringtheorie wird angenommen, dass es insgesamt 10 oder 11 Dimensionen gibt. Diese zusätzlichen Dimensionen sind oft kompaktifiziert, was bedeutet, dass sie auf sehr kleinen Skalen gefaltet oder gerollt sind, sodass sie im Alltag nicht sichtbar sind. Die Struktur und die Eigenschaften dieser zusätzlichen Dimensionen spielen eine entscheidende Rolle bei der Bestimmung der physikalischen Gesetze, die die Teilchen und deren Wechselwirkungen beschreiben.

Erneuerbare Energietechnik

Renewable Energy Engineering beschäftigt sich mit der Entwicklung, Implementierung und Optimierung von Technologien, die auf erneuerbaren Energiequellen basieren. Dazu gehören Solarenergie, Windenergie, Wasserkraft, Geothermie und Biomasse. Ingenieure in diesem Bereich analysieren die Effizienz von Energieumwandlungsprozessen und entwerfen Systeme, die eine nachhaltige Energieproduktion ermöglichen. Sie berücksichtigen auch wirtschaftliche, ökologische und soziale Faktoren, um Lösungen zu finden, die sowohl technisch als auch wirtschaftlich tragfähig sind. Der Fokus liegt darauf, die Abhängigkeit von fossilen Brennstoffen zu reduzieren und die Umweltauswirkungen von Energiegewinnung und -nutzung zu minimieren. In einer Zeit des Klimawandels ist die Rolle von Renewable Energy Engineering entscheidend für die Gestaltung einer nachhaltigen Zukunft.