StudierendeLehrende

Perovskite Structure

Die Perovskitstruktur ist eine spezifische Kristallstruktur, die nach dem Mineral Perowskit (CaTiO₃) benannt ist. Diese Struktur hat die allgemeine chemische Formel ABX₃, wobei A und B Kationen verschiedener Größen sind und X ein Anion darstellt. Die A-Kationen befinden sich in den Ecken des Würfels, die B-Kationen im Zentrum und die X-Anionen in den Mitten der Kanten des Würfels. Diese Anordnung sorgt für eine hohe Flexibilität und ermöglicht die Aufnahme verschiedener Elemente, was die Perovskitstruktur in der Materialwissenschaft besonders interessant macht. Aufgrund ihrer einzigartigen elektrischen, optischen und magnetischen Eigenschaften finden Perovskite Anwendung in Bereichen wie der Solarenergie, der Katalyse und der elektronischen Bauelemente.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Giffen-Paradoxon

Das Giffen-Paradox beschreibt ein ökonomisches Phänomen, bei dem der Preis eines Gutes steigt, während die nachgefragte Menge ebenfalls zunimmt, was den klassischen Gesetzen von Angebot und Nachfrage widerspricht. Typischerweise handelt es sich um ein inferiores Gut, dessen Nachfrage steigt, wenn das Einkommen der Konsumenten sinkt. Ein klassisches Beispiel ist Brot: Wenn der Preis für Brot steigt, könnten arme Haushalte gezwungen sein, weniger von teureren Lebensmitteln zu kaufen und stattdessen mehr Brot zu konsumieren, um ihre Ernährung aufrechtzuerhalten. Dies führt dazu, dass die Nachfrage nach Brot trotz des Preisanstiegs steigt, was dem Konzept der substituierenden Güter widerspricht. Das Giffen-Paradox zeigt, wie komplex die Zusammenhänge zwischen Preis, Einkommen und Nachfragemustern in der Wirtschaft sein können.

Grenznutzungsneigung zum Sparen

Die Marginal Propensity To Save (MPS) beschreibt den Anteil des zusätzlichen Einkommens, den Haushalte sparen, anstatt ihn auszugeben. Sie wird als das Verhältnis der Erhöhung des Sparens zur Erhöhung des Einkommens definiert. Mathematisch kann dies dargestellt werden als:

MPS=ΔSΔYMPS = \frac{\Delta S}{\Delta Y}MPS=ΔYΔS​

wobei ΔS\Delta SΔS die Veränderung des Sparens und ΔY\Delta YΔY die Veränderung des Einkommens ist. Eine hohe MPS bedeutet, dass Haushalte einen großen Teil ihres zusätzlichen Einkommens sparen, während eine niedrige MPS darauf hindeutet, dass sie mehr konsumieren. Die MPS ist ein wichtiger Indikator für wirtschaftliche Stabilität und kann Einfluss auf die gesamtwirtschaftliche Nachfrage haben, da höhere Sparquoten oft in Zeiten wirtschaftlicher Unsicherheit beobachtet werden.

Zeitreihe

Eine Zeitreihe ist eine Sequenz von Datenpunkten, die in chronologischer Reihenfolge angeordnet sind und häufig über regelmäßige Zeitintervalle erfasst werden. Diese Daten können verschiedene Phänomene darstellen, wie zum Beispiel Aktienkurse, Temperaturmessungen oder Verkaufszahlen. Die Analyse von Zeitreihen ermöglicht es, Muster und Trends im Zeitverlauf zu identifizieren, Vorhersagen zu treffen und saisonale Schwankungen zu erkennen. Wichtige Aspekte der Zeitreihenanalyse sind die Trendkomponente, die langfristige Bewegungen darstellt, und die saisonale Komponente, die sich auf wiederkehrende Muster über festgelegte Zeiträume bezieht. Mathematisch wird eine Zeitreihe oft als Funktion f(t)f(t)f(t) dargestellt, wobei ttt die Zeit darstellt.

Laplace-Transformation

Die Laplace-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Ingenieurwissenschaft und Mathematik verwendet wird, um Differentialgleichungen zu lösen und Systeme zu analysieren. Sie wandelt eine Funktion f(t)f(t)f(t), die von der Zeit ttt abhängt, in eine Funktion F(s)F(s)F(s), die von einer komplexen Frequenz sss abhängt, um. Die allgemeine Form der Laplace-Transformation ist gegeben durch die Gleichung:

F(s)=∫0∞e−stf(t) dtF(s) = \int_0^{\infty} e^{-st} f(t) \, dtF(s)=∫0∞​e−stf(t)dt

Hierbei ist e−ste^{-st}e−st der Dämpfungsfaktor, der hilft, das Verhalten der Funktion im Zeitbereich zu steuern. Die Transformation ist besonders nützlich, da sie die Lösung von Differentialgleichungen in algebraische Gleichungen umwandelt, was die Berechnungen erheblich vereinfacht. Die Rücktransformation, die als Inverse Laplace-Transformation bekannt ist, ermöglicht es, die ursprüngliche Funktion f(t)f(t)f(t) aus F(s)F(s)F(s) zurückzugewinnen.

Variationsinferenztechniken

Variational Inference (VI) ist ein leistungsfähiges Verfahren zur Approximation von posterioren Verteilungen in probabilistischen Modellen. Anstatt die komplexe, oft analytisch nicht lösbare posterior Verteilung direkt zu berechnen, wird ein einfacherer, parametrischer Verteilungsfamilie q(θ;ϕ)q(\theta; \phi)q(θ;ϕ) gewählt, die durch die Variablen ϕ\phiϕ parametrisiert wird. Das Ziel von VI ist es, die Parameter ϕ\phiϕ so zu optimieren, dass die Kullback-Leibler-Divergenz zwischen der gewählten Verteilung und der tatsächlichen posterioren Verteilung minimiert wird:

DKL(q(θ;ϕ)∥p(θ∣x))=∫q(θ;ϕ)log⁡q(θ;ϕ)p(θ∣x)dθD_{KL}(q(\theta; \phi) \| p(\theta | x)) = \int q(\theta; \phi) \log \frac{q(\theta; \phi)}{p(\theta | x)} d\thetaDKL​(q(θ;ϕ)∥p(θ∣x))=∫q(θ;ϕ)logp(θ∣x)q(θ;ϕ)​dθ

Durch Minimierung dieser Divergenz wird die Approximation verbessert. VI ist besonders nützlich in großen Datensätzen und komplexen Modellen, wo traditionelle Methoden wie Markov-Chain-Monte-Carlo (MCMC) ineffizient sein können. Zu den gängigen VI-Techniken gehören Mean-Field Approximation, bei der die Unabhängigkeit der Variablen angenommen wird, und Stochastic Variational Inference, das stochastische Optimierung verwendet, um die Eff

Inflationäres Universum Modell

Das Inflationary Universe Model ist eine Theorie in der Kosmologie, die sich mit den Bedingungen und der Entwicklung des Universums in den ersten Momenten nach dem Urknall beschäftigt. Laut diesem Modell erlebte das Universum eine extrem schnelle Expansion, bekannt als Inflation, die in der Zeitspanne von 10−3610^{-36}10−36 bis 10−3210^{-32}10−32 Sekunden nach dem Urknall stattfand. Diese Phase der exponentiellen Expansion erklärt mehrere beobachtete Phänomene, wie die homogene und isotrope Verteilung der Galaxien im Universum sowie die flache Geometrie des Raums.

Die Inflation wird durch eine hypothetische Energieform, das Inflaton, angetrieben, die eine negative Druckwirkung hat und somit die Expansion des Raums beschleunigt. Ein zentrales Ergebnis dieser Theorie ist, dass kleine Quantenfluktuationen, die während der Inflation auftraten, die Grundlage für die großräumige Struktur des Universums bilden. Zusammengefasst bietet das Inflationary Universe Model eine elegante Erklärung für die frühen Bedingungen des Universums und ihre Auswirkungen auf die gegenwärtige Struktur.