Der Perron-Frobenius-Satz ist ein zentrales Resultat in der linearen Algebra, das sich mit den Eigenwerten und Eigenvektoren von nicht-negativen Matrizen beschäftigt. Er besagt, dass eine irreduzible, nicht-negative Matrix einen einzigartigen größten Eigenwert hat, der positiv ist, und dass der zugehörige Eigenvektor ebenfalls positive Komponenten besitzt. Dies ist besonders wichtig in verschiedenen Anwendungen, wie zum Beispiel in der Wirtschaft, wo Wachstumsmodelle oder Markov-Ketten analysiert werden.
Die grundlegenden Voraussetzungen für den Satz sind, dass die Matrix irreduzibel (d.h. es gibt keinen Weg, um von einem Zustand zu einem anderen zu gelangen) und nicht-negativ (alle Elemente sind ≥ 0) ist. Der größte Eigenwert und der zugehörige Eigenvektor erfüllen dann die Gleichung:
Hierbei ist die betreffende Matrix. Die Konzepte aus dem Perron-Frobenius-Satz sind nicht nur theoretisch von Bedeutung, sondern finden auch praktische Anwendungen in der Wirtschaft, Biologie und anderen Disziplinen, in denen Systeme dynamisch und vernetzt sind.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.