StudierendeLehrende

Phillips Trade-Off

Der Phillips Trade-Off beschreibt die inverse Beziehung zwischen Inflation und Arbeitslosigkeit, die ursprünglich von dem neuseeländischen Ökonomen A.W. Phillips formuliert wurde. Laut dieser Theorie existiert ein kurzfristiger Kompromiss, bei dem eine Senkung der Arbeitslosigkeit mit einer Erhöhung der Inflation einhergeht. Dies kann durch die folgende Beziehung verdeutlicht werden: Wenn die Arbeitslosigkeit unter ein bestimmtes Niveau sinkt, steigen die Löhne, was zu höheren Produktionskosten und folglich zu einer steigenden Inflation führt.

In der langfristigen Betrachtung wird jedoch argumentiert, dass dieser Trade-Off nicht besteht, da die Volkswirtschaft sich an die Inflationserwartungen anpasst, was zu einer natürlichen Arbeitslosenquote führt. Dies bedeutet, dass der Phillips Trade-Off vor allem in kurzfristigen wirtschaftlichen Szenarien relevant ist, während langfristig die Inflation von anderen Faktoren, wie der Geldpolitik und den Erwartungen der Wirtschaftssubjekte, beeinflusst wird.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Einstein-Koeffizient

Der Einstein-Koeffizient ist ein wichtiger Parameter in der Quantenmechanik und der Atomphysik, der die Übergangswahrscheinlichkeit zwischen zwei quantisierten Energieniveaus eines Atoms oder Moleküls beschreibt. Es gibt drei Hauptarten von Einstein-Koeffizienten: AAA-Koeffizienten, die die spontane Emission eines Photons charakterisieren, und BBB-Koeffizienten, die die stimulierte Emission und Absorption von Photonen beschreiben. Diese Koeffizienten sind entscheidend für das Verständnis von Phänomenen wie der Laserspektroskopie und der Thermodynamik von strahlenden Systemen.

Die Beziehung zwischen den verschiedenen Koeffizienten kann durch das Gesetz der Planckschen Strahlung und die Boltzmann-Verteilung erklärt werden. Der AAA-Koeffizient ist typischerweise größer als die BBB-Koeffizienten, was bedeutet, dass spontane Emission in der Regel wahrscheinlicher ist als die stimulierte Emission. Diese Konzepte sind grundlegend für die Entwicklung von Technologien wie Laser und LEDs.

Transfermatrix

Die Transfer Matrix ist ein wesentliches Konzept in der Physik und Ingenieurwissenschaft, das zur Analyse von Systemen verwendet wird, die über verschiedene Zustände oder Schichten verteilt sind. Sie ermöglicht es, die Wechselwirkungen zwischen diesen Zuständen oder Schichten mathematisch zu beschreiben. Im Wesentlichen stellt die Transfer Matrix die Beziehung zwischen den Zuständen vor und nach einem bestimmten System dar. Mathematisch kann dies oft in Form einer Matrix TTT ausgedrückt werden, die die Transformation eines Zustands v\mathbf{v}v beschreibt:

v′=T⋅v\mathbf{v}' = T \cdot \mathbf{v}v′=T⋅v

Hierbei ist v′\mathbf{v}'v′ der neue Zustand nach der Transformation. Die Anwendung der Transfer Matrix findet sich häufig in der Quantenmechanik, Optik und Materialwissenschaft, wo sie verwendet wird, um beispielsweise die Reflexion und Transmission von Wellen an Grenzflächen zu untersuchen. Wesentlich ist, dass die Transfer Matrix es ermöglicht, komplexe Systeme durch die Zerlegung in einfachere Teilprobleme zu analysieren.

Wärmeschutzbeschichtungen

Thermal Barrier Coatings (TBCs) sind spezielle Beschichtungen, die entwickelt wurden, um Materialien vor hohen Temperaturen und thermischen Schocks zu schützen. Diese Beschichtungen bestehen häufig aus keramischen Materialien, die eine geringe Wärmeleitfähigkeit aufweisen, wodurch sie als Isolatoren fungieren. Durch den Einsatz von TBCs können die Betriebstemperaturen von Bauteilen, wie beispielsweise Turbinenschaufeln in Gasturbinen, erhöht werden, was zu einer verbesserten Effizienz und einer längeren Lebensdauer der Komponenten führt.

Die Wirksamkeit von TBCs beruht auf mehreren Faktoren, darunter die Dicke, die Mikrostruktur der Beschichtung und die Anpassung an das Substrat. Eine gängige chemische Zusammensetzung für TBCs ist Zirkonia, die mit Yttrium stabilisiert wird (YSZ - Yttrium-stabilisiertes Zirkoniumdioxid). Diese Materialien können Temperaturen von über 1000 °C standhalten, was sie ideal für Anwendungen in der Luft- und Raumfahrt sowie in der Energietechnik macht.

Floyd-Warshall

Der Floyd-Warshall-Algorithmus ist ein graphentheoretisches Verfahren zur Bestimmung der kürzesten Wege zwischen allen Paaren von Knoten in einem gewichteten Graphen. Er funktioniert sowohl für gerichtete als auch für ungerichtete Graphen und kann positive sowie negative Gewichtungen verarbeiten, solange es keine negativen Zyklen gibt. Der Algorithmus basiert auf der dynamischen Programmierung und nutzt eine Matrix, um die aktuellen Abstände zwischen den Knoten zu speichern.

Die Grundidee ist, dass der kürzeste Weg zwischen zwei Knoten iii und jjj möglicherweise über einen dritten Knoten kkk verläuft. Die Aktualisierungsformel lautet:

d[i][j]=min⁡(d[i][j],d[i][k]+d[k][j])d[i][j] = \min(d[i][j], d[i][k] + d[k][j])d[i][j]=min(d[i][j],d[i][k]+d[k][j])

Hierbei steht d[i][j]d[i][j]d[i][j] für die aktuelle Distanz zwischen den Knoten iii und jjj. Der Algorithmus wird in O(V3)O(V^3)O(V3) Zeit ausgeführt, wobei VVV die Anzahl der Knoten ist. Am Ende werden alle kürzesten Wege in der Matrix ddd gespeichert, was den Algorithmus besonders nützlich für Anwendungen macht, die eine vollständige Distanzmatrix benötigen.

Weierstrass-Vorbereitungssatz

Das Weierstrass Preparation Theorem ist ein fundamentales Resultat in der komplexen Analysis und der algebraischen Geometrie, das sich mit der Struktur von holomorphen Funktionen in der Nähe von isolierten Singularitäten befasst. Es besagt, dass jede holomorphe Funktion f(z)f(z)f(z) in einer Umgebung von einem Punkt aaa in der komplexen Ebene, der eine isolierte Singularität besitzt, sich in eine produktform darstellen lässt. Genauer gesagt kann f(z)f(z)f(z) in der Form

f(z)=(z−a)mg(z)f(z) = (z - a)^m g(z)f(z)=(z−a)mg(z)

geschrieben werden, wobei mmm eine nicht-negative ganze Zahl ist und g(z)g(z)g(z) eine holomorphe Funktion ist, die an aaa nicht verschwindet. Dies bedeutet, dass g(a)≠0g(a) \neq 0g(a)=0. Das Theorem ist besonders nützlich, um die Struktur von Funktionen zu analysieren und zu verstehen, wie sich die Werte der Funktion in der Umgebung der Singularität verhalten. Die Resultate des Weierstrass-Vorbereitungssatzes finden Anwendung in verschiedenen Bereichen, wie etwa der Singulärtheorie und der komplexen Differentialgeometrie.

Bürstenloser Gleichstrommotorsteuerung

Die steuerung von bürstenlosen Gleichstrommotoren (BLDC-Motoren) erfolgt durch den Einsatz von elektronischen Schaltungen, die den Stromfluss zu den Motorwicklungen gezielt steuern. Im Gegensatz zu bürstenbehafteten Motoren, bei denen mechanische Bürsten den Strom zu den Wicklungen leiten, verwenden BLDC-Motoren elektromagnetische Felder, die durch Sensoren oder Sensorless-Techniken erzeugt werden. Die Regelung erfolgt typischerweise über Pulsweitenmodulation (PWM), um die Spannung und den Strom präzise zu steuern und somit das Drehmoment und die Drehzahl des Motors zu regulieren.

Diese Systeme bestehen oft aus einem Steuergerät, das die Motorposition ermittelt, und einem Treiber, der die Wicklungen entsprechend ansteuert. Die Vorteile von BLDC-Motoren umfassen eine höhere Effizienz, längere Lebensdauer und geringere Geräuschentwicklung, was sie ideal für Anwendungen in der Industrie, Robotik und Konsumgütern macht.