Das Weierstrass Preparation Theorem ist ein fundamentales Resultat in der komplexen Analysis und der algebraischen Geometrie, das sich mit der Struktur von holomorphen Funktionen in der Nähe von isolierten Singularitäten befasst. Es besagt, dass jede holomorphe Funktion in einer Umgebung von einem Punkt in der komplexen Ebene, der eine isolierte Singularität besitzt, sich in eine produktform darstellen lässt. Genauer gesagt kann in der Form
geschrieben werden, wobei eine nicht-negative ganze Zahl ist und eine holomorphe Funktion ist, die an nicht verschwindet. Dies bedeutet, dass . Das Theorem ist besonders nützlich, um die Struktur von Funktionen zu analysieren und zu verstehen, wie sich die Werte der Funktion in der Umgebung der Singularität verhalten. Die Resultate des Weierstrass-Vorbereitungssatzes finden Anwendung in verschiedenen Bereichen, wie etwa der Singulärtheorie und der komplexen Differentialgeometrie.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.