StudierendeLehrende

Photonic Bandgap Crystal Structures

Photonic Bandgap Kristallstrukturen sind Materialien, die bestimmte Wellenlängen von Licht blockieren und andere durchlassen, ähnlich wie Halbleiter in der Elektronik. Diese Strukturen bestehen aus periodischen Anordnungen von Materialien mit unterschiedlichen Brechungsindizes, was zu einem Photonic Bandgap führt – einem Bereich im Spektrum, in dem die Ausbreitung von Lichtwellen unterdrückt wird. Die räumliche Anordnung der Materialien kann durch verschiedene Geometrien wie 2D- oder 3D-Kristalle realisiert werden.

Die Eigenschaften dieser Kristalle werden durch die Brillouin-Zone beschrieben, und die Dispersionrelation zeigt, welche Frequenzen für die Ausbreitung von Lichtwellen erlaubt oder verboten sind. Anwendungen von Photonic Bandgap Kristallen sind vielfältig und reichen von optischen Filtern über Lasern bis hin zu Sensoren, wobei sie eine Schlüsselrolle in der Entwicklung von Technologien für die Photonik und optische Kommunikation spielen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Higgs-Boson

Das Higgs-Boson ist ein fundamentales Teilchen in der Teilchenphysik, das im Rahmen des Standardmodells eine zentrale Rolle spielt. Es wurde 2012 am Large Hadron Collider (LHC) am CERN nachgewiesen und ist entscheidend für das Verständnis, wie Teilchen ihre Masse erhalten. Der Mechanismus, der diesem Prozess zugrunde liegt, wird als Higgs-Mechanismus bezeichnet und basiert auf dem Higgs-Feld, das den gesamten Raum durchdringt. Teilchen, die mit diesem Feld wechselwirken, erhalten eine Masse, während andere, wie das Photon, masselos bleiben.

Die Entdeckung des Higgs-Bosons war ein Meilenstein in der Physik, da es die letzte fehlende Komponente des Standardmodells darstellt. Der Nachweis des Higgs-Bosons bestätigt die theoretischen Vorhersagen von Physikern wie Peter Higgs und anderen, die in den 1960er Jahren das Konzept des Higgs-Feldes entwickelten.

Ricardianische Äquivalenz

Die Ricardian Equivalence ist ein wirtschaftliches Konzept, das von dem britischen Ökonomen David Ricardo im 19. Jahrhundert formuliert wurde. Es besagt, dass die Art und Weise, wie Regierungen ihre Ausgaben finanzieren – durch Steuern oder durch Schulden – keinen Einfluss auf die Gesamtnachfrage in der Volkswirtschaft hat, solange die Haushalte rational sind. Das grundlegende Argument ist, dass, wenn eine Regierung ihre Ausgaben durch Schulden finanziert, die Haushalte in der Erwartung höherer zukünftiger Steuern ihre Ersparnisse erhöhen, um sich auf diese Steuerlast vorzubereiten.

In mathematischen Begriffen kann dies wie folgt dargestellt werden: Angenommen, eine Regierung plant, ihre Ausgaben GGG über eine Anleihe zu finanzieren. Die Haushalte antizipieren, dass in der Zukunft die Steuern TTT steigen werden, um die Schulden zurückzuzahlen, und passen ihr Sparverhalten entsprechend an. Dies führt zu der Idee, dass die Nettowirkung von Staatsausgaben auf die Volkswirtschaft neutral bleibt, da die Ersparnis der Haushalte die zusätzliche Staatsausgabe ausgleicht.

Zusammengefasst:

  • Staatsausgaben können durch Steuern oder Schulden finanziert werden.
  • Haushalte passen ihre Sparquote an, um

Von-Neumann-Nutzentheorie

Die Von Neumann Utility-Theorie, benannt nach dem Mathematiker John von Neumann, ist ein fundamentales Konzept in der Spieltheorie und der Entscheidungstheorie. Sie besagt, dass der Nutzen eines Individuums aus einer bestimmten Handlung oder Entscheidung in einem unsicheren Umfeld als eine Funktion der möglichen Ergebnisse und deren Wahrscheinlichkeiten dargestellt werden kann. Der Nutzen U(x)U(x)U(x) eines Ergebnisses xxx wird dabei häufig als eine reelle Zahl interpretiert, die den subjektiven Wert oder die Zufriedenheit des Individuums widerspiegelt.

In der einfachsten Form können wir den erwarteten Nutzen EUEUEU einer Entscheidung als gewichtete Summe der Nutzenwerte der möglichen Ergebnisse formulieren:

EU=∑ipiU(xi)EU = \sum_{i} p_i U(x_i)EU=i∑​pi​U(xi​)

Hierbei ist pip_ipi​ die Wahrscheinlichkeit des Ergebnisses xix_ixi​. Die Theorie legt nahe, dass rationale Entscheidungsträger ihre Entscheidungen so treffen, dass sie ihren erwarteten Nutzen maximieren. Dieses Konzept hat weitreichende Anwendungen in Wirtschaft, Finanzen und anderen Disziplinen, wo Unsicherheit und strategische Interaktionen eine Rolle spielen.

Multi-Elektroden-Array-Neurophysiologie

Multi-Electrode Array (MEA) Neurophysiology ist eine fortschrittliche Technik zur Untersuchung der elektrischen Aktivität von Nervenzellen. Diese Methode verwendet Arrays von Mikroelektroden, die in engem Kontakt mit biologischem Gewebe stehen, um die neuronale Aktivität von vielen Zellen gleichzeitig zu erfassen. Ein wesentlicher Vorteil dieser Technik ist die Möglichkeit, sowohl die zeitliche als auch die räumliche Dynamik der neuronalen Signale zu analysieren, was zu einem besseren Verständnis von neuronalen Netzwerken führt.

Die gewonnenen Daten können in Form von Spike-Train-Analysen oder Potentialaufzeichnungen dargestellt werden, die Informationen über die Reaktionsmuster der Neuronen liefern. MEA-Technologie findet Anwendung in verschiedenen Bereichen, darunter die Grundlagenforschung zu neuronalen Mechanismen, die Entwicklung von Neuroprothesen und die Untersuchung von Krankheiten wie Alzheimer oder Parkinson. Diese Methode spielt eine entscheidende Rolle in der Schnittstelle von Neurobiologie und Ingenieurwissenschaften, indem sie es ermöglicht, komplexe neuronale Interaktionen in Echtzeit zu beobachten.

Eigenwerte

Eigenwerte, auch Eigenvalues genannt, sind spezielle Werte, die in der linearen Algebra eine wichtige Rolle spielen. Sie sind mit Matrizen und linearen Transformationen verbunden. Ein Eigenwert einer Matrix AAA ist ein Skalar λ\lambdaλ, für den es einen nicht-trivialen Vektor vvv gibt, sodass die folgende Gleichung gilt:

Av=λvA v = \lambda vAv=λv

Dies bedeutet, dass die Anwendung der Matrix AAA auf den Vektor vvv lediglich eine Skalierung des Vektors bewirkt, ohne seine Richtung zu ändern. Eigenwerte sind entscheidend für viele Anwendungen, wie z.B. in der Physik, um Stabilitätsanalysen durchzuführen, oder in der Wirtschaft, um Wachstums- und Verhaltensmodelle zu verstehen. Um die Eigenwerte einer Matrix zu finden, löst man die charakteristische Gleichung:

det(A−λI)=0\text{det}(A - \lambda I) = 0det(A−λI)=0

Hierbei ist III die Einheitsmatrix und det\text{det}det steht für die Determinante.

Kalman-Verstärkung

Der Kalman Gain ist ein entscheidendes Konzept im Kalman-Filter, einem Algorithmus, der zur Schätzung des Zustands eines dynamischen Systems verwendet wird. Er bestimmt, wie stark die Schätzung des aktuellen Zustands auf die neuen Messungen reagieren sollte. Der Kalman Gain wird durch die Gleichung

K=PpredHTHPpredHT+RK = \frac{P_{pred} H^T}{H P_{pred} H^T + R}K=HPpred​HT+RPpred​HT​

bestimmt, wobei KKK der Kalman Gain, PpredP_{pred}Ppred​ die vorhergesagte Kovarianz, HHH die Beobachtungsmatrix und RRR die Messrauschen-Kovarianz ist. Ein hoher Kalman Gain bedeutet, dass die neuen Messungen einen größeren Einfluss auf die Schätzung haben, während ein niedriger Gain darauf hindeutet, dass die vorherige Schätzung stärker gewichtet wird. Somit spielt der Kalman Gain eine zentrale Rolle bei der Balancierung zwischen Vorhersage und Messung, um die Genauigkeit der Zustandsabschätzung zu maximieren.