StudierendeLehrende

Photonic Crystal Design

Das Design von photonischen Kristallen bezieht sich auf die gezielte Gestaltung von Materialien, die eine regelmäßige Struktur aufweisen und die Wechselwirkung von Licht mit Materie steuern können. Diese Kristalle haben eine periodische Anordnung von Materialien mit unterschiedlichen Brechungsindices, was zu einem Phänomen führt, das als Bandlücken bekannt ist. In diesen Bandlücken kann Licht bestimmter Frequenzen nicht propagieren, wodurch photonische Kristalle als Filter oder Wellenleiter fungieren.

Ein typisches Beispiel sind photonic crystal fibers, die durch ihr Design eine hochgradige Kontrolle über die Lichtausbreitung bieten. Die mathematische Beschreibung solcher Strukturen erfolgt oft durch die Lösung der Maxwell-Gleichungen, wobei die Strukturparameter wie Periodizität und Brechungsindex entscheidend sind. Die Anwendungsmöglichkeiten reichen von optischen Komponenten in der Telekommunikation bis hin zu Sensoren und Quantencomputing.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Endogene Wachstumstheorie

Die endogene Wachstumstheorie ist ein Konzept in der Wirtschaftswissenschaft, das erklärt, wie wirtschaftliches Wachstum aus inneren Faktoren einer Volkswirtschaft resultiert, anstatt von externen Einflüssen. Sie hebt die Rolle von Technologie, Innovation und Bildung hervor, die als Treiber für langfristiges Wachstum dienen. Im Gegensatz zur klassischen Wachstumstheorie, die annehmend ist, dass technologische Fortschritte exogen sind, argumentiert die endogene Wachstumstheorie, dass Investitionen in Humankapital und Forschung & Entwicklung direkt zur Produktivität und damit zum Wachstum beitragen.

Ein zentrales Modell in der endogenen Wachstumstheorie ist das AK-Modell, bei dem die Produktionsfunktion als linear in Kapital dargestellt wird. Dies bedeutet, dass die Produktion YYY durch die Gleichung Y=A⋅KY = A \cdot KY=A⋅K beschrieben werden kann, wobei AAA den technologischen Fortschritt und KKK das Kapital darstellt. Die Theorie betont, dass höhere Investitionen in Bildung und Forschung die Fähigkeit einer Volkswirtschaft verbessern, neue Technologien zu entwickeln, was zu einem nachhaltigen Wachstum führt.

Feynman-Pfadintegral-Formulierung

Die Feynman Path Integral Formulation ist ein Konzept in der Quantenmechanik, das von Richard Feynman eingeführt wurde. Es beschreibt die Bewegung eines Teilchens nicht als eine einzelne, definierte Bahn, sondern als eine Summe aller möglichen Wege, die das Teilchen zwischen zwei Punkten nehmen kann. Jeder dieser Wege trägt einen bestimmten Wellenfaktor, der durch die exponentielle Funktion eiSℏe^{\frac{i S}{\hbar}}eℏiS​ gegeben ist, wobei SSS die Wirkung ist, die entlang des Weges berechnet wird, und ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum ist.

Die Gesamtamplitude für die Übergangswahrscheinlichkeit von einem Zustand zu einem anderen wird dann als Integral über alle möglichen Pfade formuliert:

K(b,a)=∫D[x(t)]eiS[x(t)]ℏK(b, a) = \int \mathcal{D}[x(t)] e^{\frac{i S[x(t)]}{\hbar}}K(b,a)=∫D[x(t)]eℏiS[x(t)]​

Hierbei ist K(b,a)K(b, a)K(b,a) die Übergangsmatrix und D[x(t)]\mathcal{D}[x(t)]D[x(t)] ein Maß über alle möglichen Pfade x(t)x(t)x(t). Diese Herangehensweise ermöglicht es Physikern, Probleme in der Quantenmechanik auf eine anschauliche und oft intuitivere Weise zu analysieren, indem sie die Beiträge aller möglichen Bewegungen eines Teilchens berücksicht

GARCH-Modell-Volatilitätsschätzung

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein weit verbreitetes Verfahren zur Schätzung der Volatilität von Zeitreihen, insbesondere in der Finanzwirtschaft. Es ermöglicht die Modellierung von variabler Volatilität, die sich über die Zeit verändert, anstatt eine konstante Volatilität anzunehmen, wie es bei vielen klassischen Modellen der Fall ist. Die Grundidee des GARCH-Modells ist, dass die heutige Volatilität durch vergangene Fehler und vergangene Volatilität beeinflusst wird. Mathematisch wird dies oft als:

σt2=α0+∑i=1qαiεt−i2+∑j=1pβjσt−j2\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2σt2​=α0​+i=1∑q​αi​εt−i2​+j=1∑p​βj​σt−j2​

dargestellt, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt ist, ε\varepsilonε die Fehlerterme und α\alphaα sowie β\betaβ die Modellparameter sind. Ein wesentliches Merkmal des GARCH-Modells ist, dass es Clusterung von Volatilität erfasst, was bedeutet, dass Perioden hoher Volatilität häufig auf Perioden hoher Volatilität folgen und umgekehrt. Dieses Modell ist besonders n

Spin-Bahn-Kopplung

Der Spin-Orbit Coupling (SOC) ist ein physikalisches Phänomen, das die Wechselwirkung zwischen dem Spin eines Teilchens und seinem orbitalen Bewegungszustand beschreibt. Diese Wechselwirkung tritt häufig in Systemen mit starken elektrischen Feldern oder in Atomen mit hohen Ordnungszahlen auf. Sie führt zu einer Aufspaltung der Energieniveaus und beeinflusst die elektronischen Eigenschaften von Materialien, insbesondere in Halbleitern und magnetischen Materialien.

Mathematisch kann der Spin-Orbit Coupling durch den Hamiltonoperator beschrieben werden, der typischerweise die Form hat:

HSO=ξL⋅SH_{SO} = \xi \mathbf{L} \cdot \mathbf{S}HSO​=ξL⋅S

Hierbei ist ξ\xiξ ein Kopplungsparameter, L\mathbf{L}L der orbitaler Drehimpuls und S\mathbf{S}S der Spin des Teilchens. Die Bedeutung des SOC ist besonders relevant in der Spintronik, wo die Manipulation des Spins zur Entwicklung neuer Technologien wie spinbasierter Transistoren angestrebt wird.

Navier-Stokes

Die Navier-Stokes-Gleichungen sind ein Satz von partiellen Differentialgleichungen, die die Bewegung von fluiden Materialien, wie Flüssigkeiten und Gasen, beschreiben. Sie basieren auf den Grundprinzipien der Erhaltung von Masse, Energie und Impuls. Die Gleichungen berücksichtigen sowohl die Viskosität des Fluids als auch externe Kräfte, wie Druck und Schwerkraft. Mathematisch ausgedrückt, können die Gleichungen in der Form:

ρ(∂u∂t+u⋅∇u)=−∇p+μ∇2u+f\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}ρ(∂t∂u​+u⋅∇u)=−∇p+μ∇2u+f

geschrieben werden, wobei ρ\rhoρ die Dichte des Fluids, u\mathbf{u}u die Geschwindigkeit, ppp den Druck, μ\muμ die Viskosität und f\mathbf{f}f externe Kräfte darstellt. Diese Gleichungen sind von zentraler Bedeutung in der Strömungsmechanik und finden Anwendung in verschiedenen Bereichen wie Meteorologie, Ozeanographie und Ingenieurwesen. Die Lösung der Navier-Stokes-Gleichungen ist jedoch oft sehr komplex und in vielen Fällen noch nicht vollständig verstanden, was sie zu einem

Knuth-Morris-Pratt-Vorverarbeitung

Der Knuth-Morris-Pratt (KMP) Algorithmus ist ein effizienter Algorithmus zur Mustererkennung in Strings, der eine Vorverarbeitung des Musters nutzt, um die Suche zu optimieren. Während der Preprocessing-Phase wird ein Prefix-Suffix Array (häufig als lps\text{lps}lps bezeichnet) erstellt, das für jedes Zeichen im Muster die Länge des längsten Präfixes angibt, das gleichzeitig auch ein Suffix ist. Diese Informationen ermöglichen es, bei einer Mismatch-Situation im Suchprozess das Muster nicht vollständig neu auszurichten, sondern an einer geeigneten Position weiterzumachen, was die Effizienz erheblich steigert. Der Algorithmus hat eine Laufzeit von O(n+m)O(n + m)O(n+m), wobei nnn die Länge des Textes und mmm die Länge des Musters ist. Durch die geschickte Nutzung des lps\text{lps}lps-Arrays wird die Anzahl der Vergleiche minimiert und die Suche somit schneller und effizienter gestaltet.