StudierendeLehrende

Rankine Cycle

Der Rankine-Zyklus ist ein thermodynamischer Prozess, der häufig in Dampfkraftwerken zur Energieerzeugung verwendet wird. Er besteht aus vier Hauptschritten: Verdampfung, Expansion, Kondensation und Kompression. Zunächst wird Wasser in einem Kessel erhitzt, wodurch es zu Dampf wird (Verdampfung). Dieser Dampf dehnt sich dann in einer Turbine aus, wo er Arbeit verrichtet und mechanische Energie erzeugt (Expansion). Anschließend wird der Dampf in einem Kondensator abgekühlt und in Wasser zurückverwandelt (Kondensation), bevor das Wasser durch eine Pumpe wieder in den Kessel geleitet wird (Kompression).

Der Wirkungsgrad des Rankine-Zyklus kann durch die Verbesserung der einzelnen Komponenten und den Einsatz von überhitztem Dampf oder regenerativen Prozessen erhöht werden. Der Zyklus wird oft mathematisch beschrieben, wobei die thermodynamischen Eigenschaften des Arbeitsmediums, in der Regel Wasser, eine zentrale Rolle spielen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.

Quanten-Spin-Flüssigkeit

Der Quantum Spin Liquid State ist ein faszinierendes Konzept in der Quantenphysik, das sich auf einen Zustand von Materie bezieht, in dem die Spins von Elektronen innerhalb eines Materials in einem hochgradig korrelierten, aber ungeordneten Zustand existieren. In diesem Zustand sind die Spins nicht festgelegt und zeigen stattdessen kollektive Quanteneffekte, die auch bei Temperaturen nahe dem absoluten Nullpunkt auftreten können. Ein charakteristisches Merkmal ist, dass die Spins in einem ständigen Fluss sind und sich nicht in einem festen Muster anordnen, was zu einem fehlen einer langfristigen magnetischen Ordnung führt.

Ein wichtiges Konzept, das mit Quantum Spin Liquids verbunden ist, ist die Topologische Ordnung, die zu neuen Arten von Quantenphasenübergängen führen kann. Diese Zustände haben das Potenzial, in der Quanteninformationsverarbeitung und in der Entwicklung von Quantencomputern genutzt zu werden, da sie robuste Zustände gegen Störungen bieten können. Quantum Spin Liquids sind ein aktives Forschungsfeld, das Einblicke in die Eigenschaften von Quantenmaterialien und deren Anwendungen in der modernen Technologie bietet.

Dünnschichtinterferenzbeschichtungen

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda2nd=mλ

beschrieben, wobei nnn der Brechungsindex, ddd die Dicke der Schicht, mmm eine ganze Zahl (Ordnung der Interferenz) und λ\lambdaλ die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,

Jordan-Normalform-Berechnung

Die Jordan-Normalform ist eine spezielle Form einer Matrix, die in der linearen Algebra verwendet wird, um die Struktur von linearen Abbildungen zu untersuchen. Eine Matrix AAA kann in die Jordan-Normalform JJJ überführt werden, die aus Jordan-Blöcken besteht, wobei jeder Block einem Eigenwert von AAA entspricht. Die Berechnung der Jordan-Normalform erfolgt in mehreren Schritten:

  1. Eigenwerte finden: Zuerst bestimmt man die Eigenwerte der Matrix AAA durch Lösen der charakteristischen Gleichung det⁡(A−λI)=0\det(A - \lambda I) = 0det(A−λI)=0.
  2. Eigenvektoren berechnen: Für jeden Eigenwert λ\lambdaλ berechnet man die Eigenvektoren und die zugehörigen Häufigkeiten.
  3. Generalisierten Eigenvektoren: Wenn die algebraische Vielfachheit eines Eigenwerts größer ist als die geometrische Vielfachheit, müssen auch die generalisierten Eigenvektoren berechnet werden.
  4. Jordan-Blöcke erstellen: Basierend auf den Eigenvektoren und den generalisierten Eigenvektoren werden die Jordan-Blöcke erstellt. Diese Blöcke bestehen aus der Hauptdiagonalen, die den Eigenwert enthält, und Einsen auf der Superdiagonalen.

Die resultierende Jordan-Normalform JJJ

Finite Element

Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur Lösung komplexer physikalischer Probleme, insbesondere in den Ingenieurwissenschaften und der Physik. Bei dieser Methode wird ein kontinuierliches Objekt in eine endliche Anzahl kleiner, diskreter Elemente unterteilt, die als Finite Elemente bezeichnet werden. Jedes Element wird durch einfache Gleichungen beschrieben, und die Eigenschaften des gesamten Systems werden durch die Kombination dieser Elemente bestimmt. Dies ermöglicht es, komplexe Geometrien und Materialverhalten zu modellieren, indem die Differentialgleichungen, die das Verhalten des Systems beschreiben, auf jedes Element angewendet werden.

Die FEM wird häufig in Bereichen wie Strukturmechanik, Thermodynamik und Fluiddynamik eingesetzt. Zu den Vorteilen der Methode gehören die Fähigkeit, die Auswirkungen von Variablen wie Materialeigenschaften und Belastungen auf das gesamte System zu analysieren und vorherzusagen. Typische Anwendungen umfassen die Berechnung von Spannungen in Bauteilen, die Analyse von Wärmeströmen oder die Untersuchung von Strömungsverhalten in Flüssigkeiten.

Feynman-Diagramme

Feynman-Diagramme sind eine visuelle Darstellung von Wechselwirkungen in der Quantenfeldtheorie, die von Richard Feynman eingeführt wurden. Sie ermöglichen es Physikern, komplexe Prozesse wie Teilchenstreuung und -umwandlung einfach darzustellen und zu analysieren. In diesen Diagrammen werden Teilchen durch Linien repräsentiert, wobei gerade Linien für massive Teilchen und gewellte Linien für Bosonen, wie Photonen, stehen. Knoten oder Vertices in den Diagrammen zeigen Punkte an, an denen Teilchen miteinander wechselwirken, was die Berechnung von Wahrscheinlichkeiten für verschiedene physikalische Prozesse vereinfacht. Feynman-Diagramme sind nicht nur ein nützliches Werkzeug für die theoretische Physik, sondern auch für die experimentelle Physik, da sie helfen, Ergebnisse von Experimenten zu interpretieren und Vorhersagen zu treffen.