Robotic Kinematics befasst sich mit der Bewegung von Robotern, ohne dabei die Kräfte zu berücksichtigen, die diese Bewegungen verursachen. Sie untersucht die Beziehung zwischen den Gelenkwinkeln eines Roboters und der Position sowie Orientierung des Endeffektors im Raum. Dies geschieht typischerweise durch die Verwendung von Transformationsmatrizen und kinematischen Ketten, die die Position und Ausrichtung der einzelnen Segmente eines Roboters beschreiben.
Die kinematischen Gleichungen können oft durch die folgenden Schritte beschrieben werden:
Diese Konzepte werden häufig durch die Verwendung von Matrizen und Vektoren präzise dargestellt, wodurch die mathematische Modellierung von Roboterbewegungen ermöglicht wird.
Reynolds Averaging ist ein Verfahren zur Analyse turbulenter Strömungen, das von Osbourne Reynolds eingeführt wurde. Es basiert auf der Idee, dass turbulente Strömungen aus einem zeitlich gemittelten Teil und einem schwankenden Teil bestehen. Mathematisch wird dies durch die Zerlegung der Strömungsgrößen, wie Geschwindigkeit , in einen Mittelwert und eine Fluktuation dargestellt, sodass gilt:
Durch diese Zerlegung können die komplexen und chaotischen Eigenschaften turbulenter Strömungen in einfacher zu behandelnde Durchschnittswerte umgewandelt werden. Reynolds Averaging führt zur sogenannten Reynolds-gleichgewichtsgleichung, die zusätzliche Terme, sogenannte Reynolds-Stress-Terme, einführt, um die Wechselwirkungen zwischen den Fluktuationen zu berücksichtigen. Diese Methode ist besonders nützlich in der Strömungsmechanik und der Aerodynamik, da sie die Berechnung von Strömungsfeldern in komplexen Geometrien und unter verschiedenen Randbedingungen erleichtert.
Die Laffer-Kurve ist ein wirtschaftliches Konzept, das den Zusammenhang zwischen Steuersätzen und den staatlichen Einnahmen beschreibt. Sie zeigt, dass es einen optimalen Steuersatz gibt, bei dem die Einnahmen maximiert werden; sowohl zu niedrige als auch zu hohe Steuersätze können zu geringeren Einnahmen führen. Dies geschieht, weil sehr niedrige Steuersätze möglicherweise nicht genug Einnahmen generieren, während sehr hohe Steuersätze Investitionen und Arbeitsanreize verringern können, was zu einer Verringerung der wirtschaftlichen Aktivität führt.
Die Kurve kann mathematisch dargestellt werden, wobei die Steuerquote auf der x-Achse und die Steuererträge auf der y-Achse abgetragen werden. Der Verlauf der Kurve zeigt, dass es einen Punkt gibt, an dem eine Erhöhung des Steuersatzes nicht nur die Einnahmen nicht steigert, sondern sie tatsächlich verringert. Die Laffer-Kurve wird oft genutzt, um politische Entscheidungen zu unterstützen, indem sie argumentiert, dass Steuersenkungen unter bestimmten Bedingungen langfristig zu höheren Einnahmen führen können.
Eine konvexe Funktion ist eine Funktion , die die Eigenschaft hat, dass für alle und für alle die folgende Ungleichung gilt:
Diese Eigenschaft bedeutet, dass die Linie zwischen zwei Punkten auf dem Graphen der Funktion niemals über den Graphen selbst hinausgeht. Ein weiteres wichtiges Merkmal konvexer Funktionen ist, dass ihre zweite Ableitung, wenn sie existiert, nicht negativ ist: . Konvexe Funktionen besitzen auch die Eigenschaft, dass lokale Minima gleichzeitig globale Minima sind, was sie besonders relevant für Optimierungsprobleme macht. Beispiele für konvexe Funktionen sind quadratische Funktionen, exponentielle Funktionen und die negative logarithmische Funktion.
Minhash ist ein probabilistisches Verfahren zur Schätzung der Ähnlichkeit zwischen großen Mengen von Daten, insbesondere für die Berechnung der Jaccard-Ähnlichkeit. Die Jaccard-Ähnlichkeit ist definiert als das Verhältnis der Größe der Schnittmenge von zwei Mengen zu der Größe ihrer Vereinigung. Minhash reduziert die Dimensionen der Datenmengen, indem es für jede Menge einen kompakten Fingerabdruck erzeugt, der als Minhash-Wert bezeichnet wird.
Der Prozess funktioniert, indem für jede Menge eine Reihe von Hashfunktionen angewendet wird. Für jede dieser Funktionen wird der kleinste Hashwert der Elemente in der Menge ausgewählt, was als Minhash bezeichnet wird. Dies ermöglicht es, die Ähnlichkeit zwischen zwei Mengen zu approximieren, indem man die Anzahl der übereinstimmenden Minhash-Werte zählt. Der Vorteil von Minhash liegt in seiner Effizienz, da es nicht notwendig ist, die gesamten Mengen zu vergleichen, sondern lediglich die generierten Minhash-Werte.
Die Cantor-Funktion, auch bekannt als Cantor-Verteilung oder Blasius-Funktion, ist eine interessante und berühmte Funktion in der Mathematik, die auf dem Cantor-Mengen basiert. Sie ist definiert auf dem Intervall und hat die bemerkenswerte Eigenschaft, dass sie überall stetig ist, aber an keiner Stelle eine Ableitung hat, was sie zu einem Beispiel für eine stetige, aber nicht differenzierbare Funktion macht.
Die Funktion wird häufig verwendet, um das Konzept der Masse und Verteilung in der Maßtheorie zu veranschaulichen. Sie wird konstruiert, indem man das Intervall in drei Teile zerlegt, den mittleren Teil entfernt und dann diese Operation wiederholt. Der Funktionswert wird auf die verbleibenden Teile so zugeordnet, dass der Funktionswert bei den entfernten Punkten gleich 0 bleibt und die Werte der verbleibenden Punkte stetig ansteigen. Die Cantor-Funktion kann formell beschrieben werden durch:
Die Cantor-Funktion ist
Die Mean-Variance Portfolio Optimization ist eine Methode zur Konstruktion eines optimalen Portfolios, das eine Balance zwischen Risiko und Rendite anstrebt. Entwickelt von Harry Markowitz in den 1950er Jahren, basiert sie auf der Annahme, dass Investoren ihre Entscheidungen auf der erwarteten Rendite und der Volatilität (Risiko) von Anlagen treffen. Der zentrale Gedanke ist, dass durch die Diversifikation von Anlagen das Gesamtrisiko eines Portfolios reduziert werden kann, ohne dass die erwartete Rendite sinkt.
Mathematisch wird das Portfolio durch die Gewichtungen der einzelnen Anlagen optimiert, wobei die erwartete Rendite und die Varianz des Portfolios wie folgt definiert sind:
Hierbei ist die erwartete Rendite der einzelnen Anlagen und die Kovarianz zwischen den Renditen der Anlagen. Das Ziel der Optimierung ist es, die Gewichtungen so zu wählen, dass die erwartete Rendite maximiert und