StudierendeLehrende

Shapley Value Cooperative Games

Der Shapley-Wert ist ein Konzept aus der Spieltheorie, das verwendet wird, um den Beitrag einzelner Spieler in kooperativen Spielen zu quantifizieren. In einem kooperativen Spiel schließen sich Spieler zusammen, um gemeinsam einen Gewinn zu erzielen, und der Shapley-Wert hilft dabei, diesen Gewinn fair zwischen den Spielern zu verteilen. Der Wert basiert auf der Idee, dass jeder Spieler einen unterschiedlichen Beitrag zu verschiedenen Koalitionen leistet, und berechnet den durchschnittlichen marginalen Nutzen, den ein Spieler für jede mögliche Koalition bringt.

Mathematisch wird der Shapley-Wert für einen Spieler iii als folgt definiert:

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

Hierbei ist v(S)v(S)v(S) der Wert, den die Koalition SSS erzielt, und NNN ist die Menge aller Spieler. Der Shapley-Wert hat zahlreiche Anwendungen in verschiedenen Bereichen, einschließlich Wirtschaft, Politik und Ökologie, da er eine faire und ausgewogene Methode zur Verteilung von Ressourcen und Gewinnen bietet.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Domänenwanddynamik

Die Domain Wall Dynamics bezieht sich auf das Verhalten und die Bewegung von Grenzflächen (Domains), die verschiedene magnetische oder strukturelle Zustände in einem Material trennen. Diese Wände sind entscheidend für das Verständnis von magnetischen Materialien, insbesondere in der Festkörperphysik und der Materialwissenschaft. Die Dynamik dieser Wände wird durch verschiedene Kräfte beeinflusst, darunter magnetische Felder, thermische Fluktuationen und mechanische Spannungen. Bei der Bewegung der Domain-Wände können verschiedene Phänomene auftreten, wie zum Beispiel die Verbreiterung oder Verschiebung der Wände, die für Anwendungen in der Datenspeicherung und der Spintronik von großer Bedeutung sind. Mathematisch können die Bewegungen durch Gleichungen wie die Landau-Lifschitz-Gleichung beschrieben werden, die die zeitliche Entwicklung der Magnetisierung M\mathbf{M}M eines Materials beschreibt.

Dinic-Algorithmus für maximale Flüsse

Der Dinic’s Max Flow Algorithmus ist ein effizienter Algorithmus zur Berechnung des maximalen Flusses in einem Netzwerk. Er kombiniert die Konzepte von Level Graphs und Blocking Flows, um den Fluss in mehreren Phasen zu optimieren. Der Algorithmus funktioniert in zwei Hauptschritten: Zuerst wird ein Level-Graph konstruiert, der die Knoten nach ihrer Entfernung von der Quelle in Schichten anordnet. Anschließend wird ein Blocking Flow gefunden, indem alle möglichen Flüsse in diesem Graphen maximiert werden, bis kein weiterer Fluss möglich ist.

Der Zeitkomplexitätsbereich des Algorithmus beträgt O(V2E)O(V^2 E)O(V2E) für allgemeine Graphen, wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten ist. In speziellen Fällen, wie bei planaren Graphen, kann die Komplexität sogar auf O(EV)O(E \sqrt{V})O(EV​) reduziert werden. Dinic's Algorithmus ist besonders nützlich in Anwendungen wie Verkehrsflussanalyse und Netzwerkdesign, wo die Maximierung des Flusses von entscheidender Bedeutung ist.

Fluktuationstheorem

Das Fluctuation Theorem ist ein fundamentales Konzept in der statistischen Mechanik, das sich mit den Fluktuationen von physikalischen Systemen im Nicht-Gleichgewicht beschäftigt. Es besagt, dass die Wahrscheinlichkeit, eine bestimmte Energie- oder Entropieänderung in einem System zu beobachten, eine symmetrische Beziehung aufweist, die von der Zeitrichtung unabhängig ist. Mathematisch lässt sich dies durch die Gleichung ausdrücken:

P(ΔS)P(−ΔS)=eΔS/kB\frac{P(\Delta S)}{P(-\Delta S)} = e^{\Delta S/k_B}P(−ΔS)P(ΔS)​=eΔS/kB​

Hierbei ist P(ΔS)P(\Delta S)P(ΔS) die Wahrscheinlichkeit, eine Entropieänderung ΔS\Delta SΔS zu beobachten, und kBk_BkB​ ist die Boltzmann-Konstante. Diese Beziehung zeigt, dass es auch im Rahmen der thermodynamischen Gesetze möglich ist, temporäre Fluktuationen zu beobachten, die gegen die üblichen Erwartungen der Entropieproduktion verstoßen. Das Fluctuation Theorem hat weitreichende Anwendungen in Bereichen wie der Thermodynamik, der Biophysik und der Nanotechnologie, da es ein tieferes Verständnis für die Natur der Wärmeübertragung und der irreversiblen Prozesse in kleinen Systemen bietet.

Schichtübergangsmetall-Dichalkogenide

Layered Transition Metal Dichalcogenides (TMDs) sind eine Klasse von Materialien, die aus Schichten von Übergangsmetallen und Chalkogeniden (wie Schwefel, Selen oder Tellur) bestehen. Diese Materialien zeichnen sich durch ihre schichtartige Struktur aus, wobei jede Schicht durch schwache van-der-Waals-Kräfte zusammengehalten wird. TMDs besitzen außergewöhnliche elektronische und optische Eigenschaften, die sie für Anwendungen in der Nanoelektronik und Photonik interessant machen. Zum Beispiel können sie als halbleitende Materialien fungieren, die sich durch das Entfernen oder Hinzufügen von Schichten in ihren Eigenschaften verändern lassen. Ein bekanntes Beispiel ist Molybdändisulfid (MoS2_22​), das aufgrund seiner hervorragenden Eigenschaften in der Forschung und Technologie viel Aufmerksamkeit erhält. Die vielfältigen Möglichkeiten zur Modifikation und Kombination dieser Materialien eröffnen neue Perspektiven für die Entwicklung innovativer Technologien in der Materialwissenschaft.

Noetherscher Satz

Das Noether-Theorem, benannt nach der Mathematikerin Emmy Noether, stellt einen tiefen Zusammenhang zwischen Symmetrien und Erhaltungssätzen in der Physik her. Es besagt, dass jede kontinuierliche Symmetrie eines physikalischen Systems eine entsprechende Erhaltungsgröße existiert. Zum Beispiel führt die Invarianz der Lagrange-Funktion unter Zeitverschiebungen zur Erhaltung der Energie, während die Invarianz unter räumlichen Verschiebungen zur Erhaltung des Impulses führt. Mathematisch formuliert wird dies oft durch die Beziehung zwischen der Variation der Lagrange-Funktion und den Ableitungen der entsprechenden Erhaltungsgrößen dargestellt. Noethers Theorem hat nicht nur in der klassischen Mechanik, sondern auch in der Quantenmechanik und der Feldtheorie bedeutende Anwendungen gefunden und ist ein grundlegendes Konzept in der theoretischen Physik.

Lindelöf-Hypothese

Die Lindelöf-Hypothese ist eine nicht bewiesene Vermutung in der Zahlentheorie, die sich mit der Verteilung der Nullstellen von Dirichlet-Reihen beschäftigt. Sie besagt, dass für jede Dirichlet-Reihe L(s,χ)L(s, \chi)L(s,χ) mit Dirichlet-Charakter χ\chiχ und für alle ϵ>0\epsilon > 0ϵ>0 die Nullstellen dieser Reihe, die nicht auf der kritischen Linie Re(s)=1/2\text{Re}(s) = 1/2Re(s)=1/2 liegen, in einer bestimmten strengen Form begrenzt sind. Genauer gesagt, sollte gelten, dass die Anzahl der Nullstellen in der Region 0<Re(s)<1+T0 < \text{Re}(s) < 1 + T0<Re(s)<1+T nicht schneller als O(T1+ϵ)O(T^{1+\epsilon})O(T1+ϵ) wachsen kann, während TTT gegen unendlich geht.

Die Hypothese ist eng mit der Riemannschen Vermutung verbunden und hat tiefgreifende Implikationen für die asymptotische Verteilung von Primzahlen und die Struktur der Zahlentheorie. Trotz intensiver Untersuchungen bleibt die Lindelöf-Hypothese eines der offenen Probleme in der modernen Mathematik.