StudierendeLehrende

Smith Predictor

Der Smith Predictor ist ein Regelungsalgorithmus, der entwickelt wurde, um die dynamischen Eigenschaften von Systemen mit Verzögerungen zu verbessern. Insbesondere wird er häufig in Regelkreisen eingesetzt, bei denen eine signifikante Verzögerung zwischen der Eingangs- und der Ausgangsreaktion auftritt. Der Hauptansatz des Smith Predictors besteht darin, ein Modell der Verzögerung zu nutzen, um die zukünftigen Werte des Systems vorherzusagen und somit die Regelung zu optimieren. Dies geschieht durch die Schätzung der Systemantwort, sodass der Regler bereits vor dem Erhalt der aktuellen Ausgabe reagieren kann.

Der Smith Predictor kann in zwei Hauptkomponenten unterteilt werden:

  1. Vorhersagemodell: Ein mathematisches Modell, das die Verzögerung und die Dynamik des Systems beschreibt.
  2. Regelungsalgorithmus: Der Regler nutzt die Vorhersagen, um die Steuerung des Systems anzupassen.

Ein typisches Beispiel für die Anwendung des Smith Predictors findet sich in der Prozessindustrie, wo die Verzögerung durch lange Transportleitungen oder Trägheit in den Prozessreaktionen verursacht wird. Durch die Implementierung des Smith Predictors kann die Regelgenauigkeit erheblich verbessert werden, was zu einer effizienteren und stabileren Systemleistung führt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dirac-Gleichungslösungen

Die Dirac-Gleichung ist eine fundamentale Gleichung der Quantenmechanik, die das Verhalten von fermionischen Teilchen, wie Elektronen, beschreibt. Sie kombiniert die Prinzipien der Quantenmechanik und der Spezialtheorie der Relativität und führt zu einem verbesserten Verständnis der Spin-1/2-Teilchen. Die Lösungen der Dirac-Gleichung umfassen sowohl positive als auch negative Energieniveaus, was zur Vorhersage der Existenz von Antimaterie führt. Mathematisch ausgedrückt kann die Dirac-Gleichung als

(iγμ∂μ−m)ψ=0(i \gamma^\mu \partial_\mu - m) \psi = 0(iγμ∂μ​−m)ψ=0

formuliert werden, wobei γμ\gamma^\muγμ die Dirac-Matrizen, ∂μ\partial_\mu∂μ​ der vierdimensionalen Ableitungsoperator und mmm die Masse des Teilchens ist. Die Lösungen ψ\psiψ sind spinorielle Funktionen, die die quantenmechanischen Zustände der Teilchen repräsentieren. Diese Lösungen spielen eine entscheidende Rolle in der modernen Physik, insbesondere in der Teilchenphysik und der Entwicklung von Quantenfeldtheorien.

Quantenfeld-Vakuumfluktuationen

Quantum Field Vacuum Fluctuations beziehen sich auf die temporären Veränderungen in den Energiezuständen des Vakuums, die durch die Prinzipien der Quantenmechanik verursacht werden. Im Quantenfeldtheorie-Modell ist das Vakuum nicht einfach leer, sondern ein dynamischer Zustand, in dem ständig virtuelle Teilchenpaare erzeugt und wieder annihiliert werden. Diese Fluktuationen sind verantwortlich für Phänomene wie den Casimir-Effekt, bei dem zwei nah beieinander liegende Platten im Vakuum aufgrund dieser Fluktuationen eine anziehende Kraft erfahren.

Die Energiedichte des Vakuums ist nicht konstant, sondern unterliegt kleinen, zufälligen Schwankungen, die mathematisch oft durch den Operator des quantisierten Feldes beschrieben werden. Diese Effekte sind in der Quantenfeldtheorie von zentraler Bedeutung und zeigen, dass das Vakuum eine aktive Rolle im Universum spielt, anstatt nur ein passiver Raum zu sein.

Digitales Signal

Ein digitales Signal ist eine Art von Signal, das Informationen in diskreten Werten darstellt, im Gegensatz zu einem analogen Signal, das kontinuierliche Werte verwendet. Digitale Signale bestehen aus einer Folge von Zahlen oder Symbolen, die typischerweise binär codiert sind, also aus den Werten 0 und 1 bestehen. Diese Signale sind besonders wichtig in der modernen Kommunikationstechnik, da sie eine effiziente Übertragung, Speicherung und Verarbeitung von Informationen ermöglichen.

Ein digitales Signal kann mathematisch als eine Funktion f(t)f(t)f(t) beschrieben werden, die nur zu bestimmten Zeitpunkten tnt_ntn​ definiert ist, was zu einer diskreten Sequenz führt. Beispielsweise kann ein digitales Signal in Form einer Folge x[n]x[n]x[n] dargestellt werden, wo nnn ein ganzzahliger Index ist, der die Zeitpunkte angibt. Die Vorteile digitaler Signale umfassen eine höhere Robustheit gegenüber Rauschen, die Möglichkeit zur einfachen Bearbeitung und die Fähigkeit, Kompressionstechniken anzuwenden, um den Speicherbedarf zu reduzieren.

Geometrisches Deep Learning

Geometric Deep Learning ist ein aufstrebendes Forschungsfeld, das sich mit der Erweiterung von Deep-Learning-Methoden auf Daten befasst, die nicht auf regulären Gitterstrukturen, wie z.B. Bilder oder Texte, basieren. Stattdessen wird der Fokus auf nicht-euklidische Daten gelegt, wie z.B. Graphen, Mannigfaltigkeiten und Netzwerke. Diese Ansätze nutzen mathematische Konzepte der Geometrie und Topologie, um die zugrunde liegenden Strukturen der Daten zu erfassen und zu analysieren. Zu den Schlüsseltechniken gehören Graph Neural Networks (GNNs), die Beziehungen zwischen Knoten in einem Graphen lernen, sowie geometrische Convolutional Networks, die die Eigenschaften von Daten in komplexen Räumen berücksichtigen.

Ein wesentliches Ziel von Geometric Deep Learning ist es, die Generalität und Flexibilität von Deep-Learning-Modellen zu erhöhen, um sie auf eine Vielzahl von Anwendungen anzuwenden, von der chemischen Datenanalyse bis hin zur sozialen Netzwerkanalyse. Die mathematische Grundlage dieser Methoden ermöglicht es, die Invarianz und Konstanz von Funktionen unter verschiedenen Transformationen zu bewahren, was entscheidend für die Verarbeitung und das Verständnis komplexer Datenstrukturen ist.

Shapley-Wert

Der Shapley Value ist ein Konzept aus der kooperativen Spieltheorie, das zur Verteilung von Gewinnen oder Verlusten unter den Mitgliedern einer Koalition verwendet wird. Er wurde von Lloyd Shapley entwickelt und basiert auf der Idee, dass jeder Spieler einen bestimmten Beitrag zum Gesamtergebnis leistet. Der Shapley Value berücksichtigt nicht nur den individuellen Beitrag eines Spielers, sondern auch, wie dieser Beitrag in verschiedenen Koalitionen zum Tragen kommt.

Mathematisch wird der Shapley Value für einen Spieler iii in einer Koalition durch die Formel

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

definiert, wobei NNN die Menge aller Spieler ist und v(S)v(S)v(S) den Wert der Koalition SSS darstellt. Der Shapley Value hat zahlreiche Anwendungen in verschiedenen Bereichen, wie z.B. der Wirtschaft, der Politik und der Verteilung von Ressourcen, da er faire und rationale Entscheidungsfindungen fördert.

Lazy Propagation Segment Tree

Ein Lazy Propagation Segment Tree ist eine Datenstruktur, die verwendet wird, um effizient mit Berechnungen in einem Bereich von Daten umzugehen, insbesondere bei häufigen Aktualisierungen und Abfragen. Sie kombiniert die Vorteile von Segmentbäumen mit einer Technik namens "Lazy Propagation", um die Zeitkomplexität von Aktualisierungen zu reduzieren. Anstatt sofort alle Knoten zu aktualisieren, speichert die Struktur Informationen über die ausstehenden Aktualisierungen und wendet diese nur dann an, wenn sie wirklich benötigt werden.

Die Grundidee ist, dass, wenn eine Aktualisierung auf einen Bereich [l,r][l, r][l,r] angewendet wird, wir nur die Wurzel des Segmentbaums und die entsprechenden Lazy-Werte aktualisieren, anstatt die gesamten betroffenen Segmente sofort zu ändern. Bei einer Abfrage muss der Baum dann sicherstellen, dass alle ausstehenden Änderungen angewendet werden, bevor das Ergebnis zurückgegeben wird. Diese Technik führt zu einer erheblichen Reduzierung der Rechenzeit bei großen Datenmengen, da die Zeitkomplexität für Aktualisierungen und Abfragen auf O(log⁡n)O(\log n)O(logn) sinkt.