Stochastic Differential Equation Models (SDEs) sind mathematische Werkzeuge, die zur Modellierung von Systemen verwendet werden, deren Dynamik durch Zufallsprozesse beeinflusst wird. Sie kombinieren deterministische und stochastische Elemente, indem sie die Veränderungen eines Systems in der Zeit sowohl durch gewöhnliche Differentialgleichungen als auch durch Zufallsvariablen beschreiben. Eine typische Form eines SDEs kann wie folgt ausgedrückt werden:
Hierbei repräsentiert den Zustand des Systems zur Zeit , ist die Driftfunktion, die die deterministische Komponente beschreibt, und ist die Diffusionsfunktion, die den Einfluss von Zufallseffekten modelliert. Der Term stellt die Wiener-Prozess (oder Brownsche Bewegung) dar, der die zufälligen Schwankungen beschreibt. SDEs finden breite Anwendung in verschiedenen Bereichen wie Finanzmathematik, Biologie und Ingenieurwissenschaften, um komplexe Phänomene, die durch Unsicherheit geprägt sind, besser zu verstehen und vorherzusagen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.