StudierendeLehrende

String Theory

Die Stringtheorie ist ein theoretisches Modell in der Physik, das versucht, die Grundlagen der Teilchenphysik und der Gravitation zu vereinen. Im Gegensatz zu herkömmlichen Teilchenmodellen, die Punktteilchen beschreiben, postuliert die Stringtheorie, dass die fundamentalen Bausteine der Materie nicht punktförmig sind, sondern eher als eindimensionale „Strings“ betrachtet werden können. Diese Strings können vibrieren und die verschiedenen Moden dieser Vibrationen entsprechen den unterschiedlichen Teilchen, die wir beobachten.

Die Theorie führt zu einer Vielzahl von Konsequenzen, darunter die Vorhersage zusätzlicher Dimensionen jenseits der uns bekannten vier (drei Raumdimensionen und die Zeit), typischerweise bis zu zehn oder elf Dimensionen. Ein zentrales Konzept der Stringtheorie ist die Supersymmetrie, die besagt, dass jedem bekannten Teilchen ein noch unbekanntes Partnerteilchen entspricht. Trotz ihrer mathematischen Eleganz ist die Stringtheorie bislang experimentell nicht verifiziert, was sie zu einem faszinierenden, aber umstrittenen Bereich der modernen Physik macht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Chandrasekhar-Grenze

Das Chandrasekhar Limit ist ein fundamentales Konzept in der Astrophysik, das die maximale Masse eines stabilen weißen Zwergsterns beschreibt. Diese Grenze beträgt etwa 1,4 Sonnenmassen (M☉). Wenn ein weißer Zwerg diesen Grenzwert überschreitet, kann er nicht mehr durch den Druck der entarteten Elektronen im Inneren stabilisiert werden und kollabiert unter seiner eigenen Schwerkraft. Dies führt oft zu einer Supernova oder zur Bildung eines Neutronensterns. Die Formel zur Berechnung des Chandrasekhar Limits beinhaltet die relativistischen Effekte und kann vereinfacht als:

Mmax≈0,61⋅ℏcG3/2me5/2M_{max} \approx \frac{0,61 \cdot \hbar c}{G^{3/2} m_e^{5/2}}Mmax​≈G3/2me5/2​0,61⋅ℏc​

dargestellt werden, wobei ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit, GGG die Gravitationskonstante und mem_eme​ die Elektronenmasse ist. Dieses Limit spielt eine zentrale Rolle im Verständnis der Endstadien der stellaren Evolution.

Kosmische Mikrowellen-Hintergrundstrahlung

Die kosmische Mikrowellenhintergrundstrahlung (CMB) ist eine nahezu gleichmäßige Strahlung, die das gesamte Universum durchdringt und als eines der stärksten Beweise für die Urknalltheorie gilt. Sie entstand etwa 380.000 Jahre nach dem Urknall, als das Universum sich ausreichend abgekühlt hatte, um Atome zu bilden, was dazu führte, dass Photonen sich frei bewegen konnten. Diese Strahlung hat eine Temperatur von etwa 2,7 Kelvin und ist im Mikrowellenbereich des elektromagnetischen Spektrums lokalisiert.

Die CMB zeigt winzige Temperaturfluktuationen, die auf die Dichteunterschiede in der frühen Materieverteilung des Universums hinweisen und damit entscheidend für die Strukturentwicklung des Universums sind. Diese Fluktuationen können durch die Lissajous-Kurven beschrieben werden, die die anisotropen Eigenschaften der CMB darstellen. Die Analyse der CMB hat Wissenschaftler in die Lage versetzt, wichtige Parameter des Kosmos, wie die Expansionsrate und die Gesamtmasse des Universums, zu bestimmen.

Arrow-Debreu-Modell

Das Arrow-Debreu-Modell ist ein fundamentales Konzept in der Mikroökonomie, das die Bedingungen für ein allgemeines Gleichgewicht in einer Volkswirtschaft beschreibt. Es wurde von den Ökonomen Kenneth Arrow und Gérard Debreu in den 1950er Jahren entwickelt und basiert auf der Annahme, dass alle Märkte vollständig und perfekt sind. In diesem Modell existieren eine Vielzahl von Gütern und Dienstleistungen, die zu verschiedenen Zeitpunkten und unter verschiedenen Zuständen der Natur gehandelt werden können. Die zentrale Idee ist, dass jedes Individuum und jedes Unternehmen Entscheidungen trifft, um ihren Nutzen oder Gewinn zu maximieren, wobei sie die Preise als gegeben betrachten.

Das Modell stellt auch die Existenz eines Gleichgewichts dar, bei dem Angebot und Nachfrage für alle Güter übereinstimmen. Mathematisch wird dies oft als Lösung eines Systems von Gleichungen dargestellt, wobei die Preise als Funktion der Präferenzen der Konsumenten und der Produktionsmöglichkeiten der Unternehmen fungieren. Ein Schlüsselkonzept des Modells ist die Vollständigkeit der Märkte, was bedeutet, dass für jede zukünftige Unsicherheit ein Markt existiert, auf dem diese gehandelt werden kann.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) ist eine Gruppe von stochastischen Methoden, die zur Lösung quantenmechanischer Probleme verwendet werden. Diese Techniken kombinieren die Prinzipien der Quantenmechanik mit Monte-Carlo-Simulationen, um die Eigenschaften von quantenmechanischen Systemen wie Atomen oder Molekülen zu berechnen. Dabei werden Zufallszahlen genutzt, um Integrale über hochdimensionale Raumzustände zu approximieren, was besonders nützlich ist, da herkömmliche numerische Methoden oft aufgrund der Komplexität der quantenmechanischen Systeme versagen.

Ein zentrales Konzept in QMC ist die Verwendung der Wellenfunktion, die die quantenmechanischen Eigenschaften eines Systems beschreibt. Durch das Sampling dieser Wellenfunktion können Energieniveaus, Molekülorbitalformen und andere physikalische Eigenschaften ermittelt werden. Zu den häufigsten QMC-Methoden gehören die Variational Monte Carlo (VMC) und die Diffusion Monte Carlo (DMC), die unterschiedliche Ansätze zur Berechnung der Grundzustandsenergie eines Systems verfolgen.

Magnetischer Monopoltheorie

Die Magnetic Monopole Theory ist eine theoretische Physik-Idee, die die Existenz von magnetischen Monopolen postuliert, also Teilchen, die nur ein magnetisches Nord- oder Südpol besitzen, im Gegensatz zu herkömmlichen Magneten, die immer ein Nord- und ein Südpole-Paar aufweisen. Diese Theorie steht im Gegensatz zu den klassischen Maxwell-Gleichungen, die besagen, dass magnetische Feldlinien immer geschlossen sind und keine isolierten monopolen Quellen existieren.

Die Idee wurde erstmals von dem Physiker Paul Dirac in den 1930er Jahren eingeführt, der zeigte, dass die Existenz von magnetischen Monopolen zu quantisierten elektrischen Ladungen führen könnte. Eine wichtige mathematische Beziehung, die in diesem Zusammenhang oft verwendet wird, ist die Dirac-Bedingung, die besagt, dass die Ladung eee eines Teilchens in Verbindung mit der magnetischen Monopolstärke ggg die Beziehung eg=nℏ2eg = \frac{n\hbar}{2}eg=2nℏ​ erfüllen muss, wobei nnn eine ganze Zahl ist und ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum darstellt.

Obwohl magnetische Monopole bisher nicht experimentell nachgewiesen wurden, bleibt die Theorie ein faszinierendes Thema in der theoretischen Physik und könnte wichtige Implikationen für unser Verständnis

Synthesebio-Logikschaltungen

Synthetic Biology Circuits sind künstlich entworfene genetische Schaltungen, die es ermöglichen, biologische Systeme gezielt zu steuern und zu modifizieren. Diese Schaltungen bestehen aus verschiedenen genetischen Elementen wie Promotoren, Genen und Regulatoren, die so kombiniert werden, dass sie spezifische Funktionen ausführen, ähnlich wie elektronische Schaltkreise in der Technik. Ein Beispiel für eine Anwendung ist die Entwicklung von Mikroben, die in der Lage sind, Biokraftstoffe oder Medikamente zu produzieren, indem sie auf Umweltbedingungen reagieren.

Die Verwendung von Standardbausteinen, wie den sogenannten BioBricks, erleichtert das Design und die Implementierung dieser Schaltungen, da sie modular aufgebaut sind und in unterschiedlichen Kombinationen eingesetzt werden können. Durch die Kombination von Systemen aus verschiedenen Organismen können Forscher neue Funktionen und Eigenschaften schaffen, die in der Natur nicht vorkommen. Die Möglichkeiten sind vielfältig und reichen von der Verbesserung der Nahrungsmittelproduktion bis zur Entwicklung neuer therapeutischer Ansätze in der Medizin.