StudierendeLehrende

Tandem Repeat Expansion

Tandem Repeat Expansion bezieht sich auf das Phänomen, bei dem sich kurze, wiederholte DNA-Sequenzen in einem Genom vergrößern. Diese Wiederholungen, auch als Tandem-Wiederholungen bekannt, können aus zwei oder mehr identischen Einheiten bestehen, die direkt hintereinander angeordnet sind. Bei der Expansion werden zusätzliche Wiederholungseinheiten in diese Region eingefügt, was zu einer zunehmenden Anzahl von Wiederholungen führt. Dies kann zu genetischen Störungen führen, da die veränderte Sequenz die normale Funktion des Gens beeinträchtigen kann. Beispiele für Erkrankungen, die mit Tandem Repeat Expansion assoziiert sind, sind Huntington-Krankheit und Spinozerebelläre Ataxie, wo die Anzahl der Wiederholungen einen direkten Einfluss auf den Schweregrad der Symptome hat.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Legendre-Transformation Anwendungen

Die Legendre-Transformation ist ein mächtiges mathematisches Werkzeug, das in verschiedenen Bereichen der Wissenschaft und Wirtschaft Anwendung findet. Sie ermöglicht es, zwischen verschiedenen Darstellungen einer Funktion zu wechseln, insbesondere zwischen den Variablen einer Funktion und ihren Ableitungen. Ein häufiges Beispiel ist die Anwendung in der Thermodynamik, wo die Legendre-Transformation verwendet wird, um von der inneren Energie U(S,V)U(S,V)U(S,V) zur Enthalpie H(S,P)H(S,P)H(S,P) zu gelangen, wobei SSS die Entropie, VVV das Volumen und PPP der Druck ist.

In der Optimierung wird die Legendre-Transformation genutzt, um duale Probleme zu formulieren, wodurch die Suche nach Minimum oder Maximum von Funktionen erleichtert wird. Außerdem findet sie in der Theoretischen Physik Anwendung, insbesondere in der Hamiltonschen Mechanik, wo sie hilft, die Bewegungsgleichungen aus den Energieformen abzuleiten. Zusammenfassend lässt sich sagen, dass die Legendre-Transformation nicht nur mathematische Eleganz bietet, sondern auch praktische Lösungen in vielen Disziplinen ermöglicht.

Dünnfilmspannungsmessung

Die Messung von Spannungen in Dünnschichten (Thin Film Stress Measurement) ist ein wichtiger Prozess in der Materialwissenschaft und der Mikroelektronik, da die mechanischen Eigenschaften dünner Filme entscheidend für die Leistung von Bauteilen sind. Diese Spannungen können durch verschiedene Faktoren verursacht werden, wie z.B. Temperaturänderungen, chemische Reaktionen oder die Abscheidungstechniken, die zur Herstellung der Filme verwendet werden.

Zur Messung der Spannungen werden häufig Techniken wie die Wafer-Biegemethode oder die X-ray Diffraction (XRD) angewendet. Bei der Wafer-Biegemethode wird die Krümmung eines Substrats gemessen, das eine dünne Schicht enthält, und die resultierende Biegung kann verwendet werden, um die interne Spannung zu berechnen. Mathematisch kann die Beziehung zwischen der Krümmung κ\kappaκ und der Spannung σ\sigmaσ durch die Formel

σ=E(1−ν)⋅κ\sigma = \frac{E}{(1 - \nu)} \cdot \kappa σ=(1−ν)E​⋅κ

beschrieben werden, wobei EEE der Elastizitätsmodul und ν\nuν die Poisson-Zahl ist. Eine präzise Messung dieser Spannungen ist entscheidend, um die Zuverlässigkeit und Lebensdauer von Halbleiterbauelementen zu gewährleisten.

Euler-Turbine

Die Euler’s Turbine ist eine spezielle Art von Turbine, die auf den Prinzipien der Fluiddynamik basiert und nach dem Mathematiker Leonhard Euler benannt ist. Sie nutzt die Umwandlung von Druck- und kinetischer Energie in mechanische Energie, um Arbeit zu verrichten. Ein wesentliches Merkmal dieser Turbine ist, dass sie sowohl die Energie aus dem Fluidstrom als auch die Änderung der Geschwindigkeit des Fluids nutzt, um eine höhere Effizienz zu erzielen.

Die Turbine besteht typischerweise aus einer Reihe von festen und beweglichen Schaufeln, die so angeordnet sind, dass sie den Durchfluss des Arbeitsmediums optimieren. Die grundlegende Gleichung, die die Leistung einer Euler-Turbine beschreibt, kann in der Form P=Q⋅ΔPηP = \frac{Q \cdot \Delta P}{\eta}P=ηQ⋅ΔP​ dargestellt werden, wobei PPP die Leistung, QQQ der Volumenstrom, ΔP\Delta PΔP die Druckdifferenz und η\etaη der Wirkungsgrad ist.

In der Anwendung findet die Euler’s Turbine häufig Verwendung in Wasserkraftwerken, Gasturbinen und anderen energieerzeugenden Systemen, wo eine effiziente Umwandlung von Energie entscheidend ist.

Hopcroft-Karp-Bipartit

Der Hopcroft-Karp-Algorithmus ist ein effizientes Verfahren zur Lösung des Problems der maximalen Paarung in bipartiten Graphen. Ein bipartiter Graph besteht aus zwei Gruppen von Knoten, wobei Kanten nur zwischen Knoten aus verschiedenen Gruppen existieren. Der Algorithmus arbeitet in zwei Hauptphasen: der Erweiterung und der Kollaps, um eine maximale Paarung zu finden.

In der Erweiterungsphase wird eine Suche nach augmentierenden Pfaden durchgeführt, die es ermöglichen, die aktuelle Paarung zu vergrößern. In der Kollapsphase wird die gefundene maximale Paarung optimiert, um die Anzahl der gepaarten Knoten zu maximieren. Die Zeitkomplexität des Hopcroft-Karp-Algorithmus beträgt O(EV)O(E \sqrt{V})O(EV​), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Dieser Algorithmus findet Anwendung in verschiedenen Bereichen, wie z.B. im Matching von Jobs und Bewerbern oder in der Zuweisung von Ressourcen.

Prim-Algorithmus

Prim’s Algorithmus ist ein effizienter Algorithmus zur Berechnung eines minimalen Spannbaums (MST) in einem gewichteten, zusammenhängenden Graphen. Der Algorithmus beginnt mit einem beliebigen Knoten und fügt schrittweise die Kante mit dem geringsten Gewicht hinzu, die einen Knoten im bereits gewählten Teilbaum mit einem Knoten außerhalb verbindet. Dieses Verfahren wird wiederholt, bis alle Knoten im Baum enthalten sind.

Der Algorithmus kann in folgenden Schritten zusammengefasst werden:

  1. Startknoten wählen: Wähle einen beliebigen Startknoten.
  2. Kante hinzufügen: Füge die Kante mit dem kleinsten Gewicht hinzu, die den Teilbaum mit einem neuen Knoten verbindet.
  3. Wiederholen: Wiederhole den Vorgang, bis alle Knoten im Spannbaum sind.

Die Laufzeit von Prim’s Algorithmus beträgt O(Elog⁡V)O(E \log V)O(ElogV), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist, insbesondere wenn ein Min-Heap oder eine Fibonacci-Haufen-Datenstruktur verwendet wird.

Dreiphasenwechselrichterbetrieb

Ein Dreiphasenwechselrichter wandelt Gleichstrom (DC) in Drehstrom (AC) um und ist ein entscheidendes Element in vielen elektrischen Anwendungen, insbesondere in der erneuerbaren Energieerzeugung und Antriebstechnik. Der Betrieb erfolgt in mehreren Schritten: Zunächst wird der Gleichstrom in eine pulsierende Wechselspannung umgewandelt, indem Halbleiterbauelemente wie Transistoren oder IGBTs in einer bestimmten Reihenfolge angesteuert werden.

Diese Ansteuerung erzeugt drei Phasen, die um 120 Grad versetzt sind, was eine gleichmäßige Verteilung der Last ermöglicht und die Effizienz des Systems steigert. Die resultierende sinusförmige Spannung kann durch die Formel V(t)=Vmax⋅sin⁡(ωt+ϕ)V(t) = V_{max} \cdot \sin(\omega t + \phi)V(t)=Vmax​⋅sin(ωt+ϕ) beschrieben werden, wobei VmaxV_{max}Vmax​ die maximale Spannung, ω\omegaω die Winkelgeschwindigkeit und ϕ\phiϕ die Phasenverschiebung ist.

Zusätzlich ermöglicht der Wechselrichter die Anpassung der Frequenz und Amplitude der Ausgangsspannung, was für die Steuerung von Motoren und anderen Geräten von großer Bedeutung ist. Die Fähigkeit, die Phasenlage und die Spannung dynamisch zu steuern, macht den Dreiphasenwechselrichter zu einem vielseitigen und leistungsfähigen Werkzeug in der modernen Elektrotechnik