Turán's Theorem ist ein fundamentales Resultat in der Graphentheorie, das sich mit der maximalen Anzahl von Kanten in einem Graphen ohne vollständige Untergraphen (Clique) einer bestimmten Größe beschäftigt. Das Theorem besagt, dass für einen Graphen mit Knoten, der keine -Clique enthält, die maximale Anzahl der Kanten ist. Hierbei ist die maximale Größe der erlaubten Clique.
Um dies zu erreichen, wird der Graph in Teile zerlegt, wobei die Anzahl der Kanten maximiert wird, indem die Kanten zwischen den Teilen gezählt werden. Das Theorem hilft dabei, die Struktur von Graphen zu verstehen und ist besonders nützlich in der combinatorial optimization und der theoretischen Informatik. Es hat auch praktische Anwendungen in verschiedenen Bereichen, wie der Netzwerk- und Datenanalyse.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.