StudierendeLehrende

Binomial Pricing

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Minimax-Suchalgorithmus

Der Minimax-Algorithmus ist ein Entscheidungsfindungsalgorithmus, der häufig in Zwei-Spieler-Nullsummenspielen wie Schach oder Tic-Tac-Toe eingesetzt wird. Er basiert auf der Idee, dass jeder Spieler versucht, seine Gewinnchancen zu maximieren, während er gleichzeitig die Gewinnchancen des Gegners minimiert. Der Algorithmus erstellt einen Baum von möglichen Spielzügen, wobei jeder Knoten des Baums einen Spielzustand darstellt.

Die Bewertung der Knoten erfolgt durch die Zuweisung von Werten, die den Ausgang des Spiels repräsentieren: positive Werte für Gewinnmöglichkeiten des ersten Spielers, negative Werte für den zweiten Spieler und null für ein Unentschieden. Der Algorithmus arbeitet rekursiv und wählt den besten Zug aus, indem er von den Blättern des Baums (den möglichen Endzuständen) nach oben geht und dabei die optimalen Entscheidungen für beide Spieler berücksichtigt.

Die mathematische Notation zur Beschreibung des Algorithmus könnte wie folgt aussehen:

\text{Minimax}(n) = \begin{cases} \text{Bewertung}(n) & \text{wenn } n \text{ ein Blatt ist} \\ \max(\text{Minimax}(k)) & \text{wenn } n \text{ ein Zug des ersten Spielers ist} \\ \min(\text{Minimax}(k)) &

Mikrocontroller-Takt

Ein Microcontroller Clock ist ein zentraler Bestandteil eines Mikrocontrollers, der die Taktfrequenz definiert, mit der der Mikrocontroller seine Operationen ausführt. Diese Taktfrequenz wird in Hertz (Hz) gemessen und bestimmt, wie viele Befehle der Mikrocontroller pro Sekunde verarbeiten kann. Typische Werte reichen von einigen Kilohertz (kHz) bis zu mehreren Megahertz (MHz).

Die Taktquelle kann entweder ein interner Oszillator oder ein externer Quarz sein, wobei letzterer oft eine höhere Genauigkeit bietet. Der Takt hat einen entscheidenden Einfluss auf die Leistungsaufnahme und die Reaktionsgeschwindigkeit des Systems. Bei der Gestaltung von Mikrocontrollersystemen ist es wichtig, die richtige Taktfrequenz auszuwählen, um ein optimales Gleichgewicht zwischen Leistung und Energieverbrauch zu erreichen.

Navier-Stokes-Turbulenzmodellierung

Das Navier-Stokes-Gleichungssystem beschreibt die Bewegungen von Fluiden und ist grundlegend für das Verständnis von Turbulenz. Turbulenz ist ein komplexes Phänomen, das durch chaotische Strömungen und Strömungsinstabilitäten gekennzeichnet ist. Bei der Modellierung von Turbulenz mit den Navier-Stokes-Gleichungen stehen Wissenschaftler vor der Herausforderung, die Vielzahl von Skalen und dynamischen Prozessen zu erfassen. Es gibt verschiedene Ansätze zur Turbulenzmodellierung, darunter:

  • Direkte Numerische Simulation (DNS): Diese Methode löst die Navier-Stokes-Gleichungen direkt und erfordert enorme Rechenressourcen.
  • Großes Eddy Simulation (LES): Hierbei werden die großen Strömungsstrukturen direkt simuliert, während die kleineren Turbulenzen modelliert werden.
  • Reynolds-zeitliche Mittelung: Bei diesem Ansatz werden die Gleichungen auf Mittelwerte angewendet, um die Effekte der Turbulenz statistisch zu erfassen.

Die Wahl des Modells hängt oft von der spezifischen Anwendung und den verfügbaren Rechenressourcen ab. Turbulenzmodellierung ist entscheidend in vielen Ingenieursdisziplinen, wie z.B. der Luftfahrt, dem Maschinenbau und der Umwelttechnik.

Rankine-Wirkungsgrad

Die Rankine-Effizienz ist ein Maß für die Leistung eines Rankine-Zyklus, der häufig in Dampfkraftwerken zur Energieerzeugung verwendet wird. Sie definiert das Verhältnis der tatsächlich erzeugten Arbeit zur maximal möglichen Arbeit, die aus dem thermodynamischen Prozess gewonnen werden kann. Mathematisch wird die Rankine-Effizienz (η\etaη) durch die Formel

η=WnettoQin\eta = \frac{W_{netto}}{Q_{in}}η=Qin​Wnetto​​

bestimmt, wobei WnettoW_{netto}Wnetto​ die netto erzeugte Arbeit und QinQ_{in}Qin​ die zugeführte Wärme ist. Ein höherer Wert der Rankine-Effizienz bedeutet, dass der Zyklus effektiver arbeitet, was zu einer besseren Umwandlung von Wärme in mechanische Energie führt. Faktoren wie die Temperaturdifferenz zwischen dem heißen und dem kalten Reservoir sowie die Qualität des verwendeten Arbeitsmediums können die Effizienz erheblich beeinflussen.

Optimalsteuerung Pontryagin

Die Pontryagin-Maximalprinzip ist ein fundamentales Konzept in der optimalen Steuerungstheorie, das von dem Mathematiker Lev Pontryagin in den 1950er Jahren entwickelt wurde. Es bietet eine Methode zur Bestimmung der optimalen Steuerung einer dynamischen Systembeschreibung, um ein bestimmtes Ziel zu erreichen, wie z.B. die Minimierung von Kosten oder die Maximierung eines Ertrags. Das Prinzip basiert auf der Formulierung eines sogenannten Hamiltonian HHH, der die Systemdynamik und die Zielfunktion kombiniert.

Der Grundgedanke des Prinzips ist, dass die optimale Steuerung u∗(t)u^*(t)u∗(t) die notwendigen Bedingungen erfüllt, um den Hamiltonian zu maximieren. Mathematisch wird dies durch die Bedingung ausgedrückt:

H(x(t),u(t),λ(t))=max⁡uH(x(t),u,λ(t))H(x(t), u(t), \lambda(t)) = \max_{u} H(x(t), u, \lambda(t))H(x(t),u(t),λ(t))=umax​H(x(t),u,λ(t))

Hierbei sind x(t)x(t)x(t) die Zustandsvariablen, u(t)u(t)u(t) die Steuerungsvariablen, und λ(t)\lambda(t)λ(t) die adjungierten Variablen. Das Prinzip liefert auch eine Reihe von Differentialgleichungen, die die Dynamik der Zustands- und adjungierten Variablen beschreiben, sowie die Bedingungen für die Endpunkte. Somit ist das Pontryagin-Maximalprinzip ein

Pauli-Ausschlussprinzip-Quantenzahlen

Die Pauli-Ausschlussregel besagt, dass zwei identische Fermionen, wie Elektronen, nicht denselben Quantenzustand einnehmen können. Diese Regel ist entscheidend für das Verständnis der Elektronenkonfiguration in Atomen und erklärt, warum sich Elektronen in verschiedenen Orbitalen anordnen. Um diese Regel zu quantifizieren, werden vier Quantenzahlen verwendet:

  1. Hauptquantenzahl (nnn): Gibt das Energieniveau des Elektrons an.
  2. Nebenquantenzahl (lll): Bestimmt die Form des Orbitals (z.B. sphärisch, hantelförmig).
  3. Magnetquantenzahl (mlm_lml​): Gibt die Orientierung des Orbitals im Raum an.
  4. Spinquantenzahl (msm_sms​): Beschreibt die Spinrichtung des Elektrons und kann den Wert +12+\frac{1}{2}+21​ oder −12-\frac{1}{2}−21​ annehmen.

Da zwei Elektronen im selben Atom nicht identisch sein können, unterscheidet sich mindestens eine ihrer Quantenzahlen. Dies führt zu einer klaren Struktur der Elektronenschalen und hat weitreichende Implikationen für die chemischen Eigenschaften der Elemente.