StudierendeLehrende

Markov Decision Processes

Markov Decision Processes (MDPs) sind mathematische Modelle, die zur Beschreibung von Entscheidungsproblemen in stochastischen Umgebungen verwendet werden. Ein MDP besteht aus einer Menge von Zuständen SSS, einer Menge von Aktionen AAA, einer Übergangswahrscheinlichkeit P(s′∣s,a)P(s'|s,a)P(s′∣s,a) und einer Belohnungsfunktion R(s,a)R(s,a)R(s,a). Die Idee ist, dass ein Agent in einem bestimmten Zustand sss eine Aktion aaa auswählt, die zu einem neuen Zustand s′s's′ führt, wobei die Wahrscheinlichkeit für diesen Übergang durch PPP bestimmt wird. Der Agent verfolgt das Ziel, die kumulierte Belohnung über die Zeit zu maximieren, was durch die Verwendung von Strategien oder Politiken π\piπ erreicht wird. MDPs sind grundlegend für viele Anwendungen in der Künstlichen Intelligenz, insbesondere im Bereich Reinforcement Learning, wo sie die Grundlage für das Lernen von optimalen Entscheidungsstrategien bilden.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Nichols-Diagramm

Ein Nichols Chart ist ein grafisches Werkzeug, das in der Regel in der Regelungstechnik verwendet wird, um die Stabilität und das Verhalten von dynamischen Systemen zu analysieren. Es stellt die Bode-Diagramme von offenen Schleifen und die Stabilitätsmargen in einem einzigen Diagramm dar. Die x-Achse zeigt die Frequenz in logarithmischer Skala, während die y-Achse die Verstärkung in dB und die Phase in Grad darstellt. Dies ermöglicht Ingenieuren, die Betriebsbedingungen eines Systems zu visualisieren und zu bestimmen, ob das System stabil ist oder nicht, indem sie die Kurven der offenen Schleifenübertragungsfunktion und der geschlossenen Schleifenübertragungsfunktion vergleichen. Ein weiterer Vorteil des Nichols Charts ist, dass es einfach ist, Reglerdesigns zu testen und zu optimieren, indem man die Position der Kurven im Diagramm anpasst.

Flussverknüpfung

Flux Linkage, oder auch Flussverknüpfung, ist ein zentrales Konzept in der Elektromagnetik und beschreibt das Produkt aus dem magnetischen Fluss durch eine Spule und der Anzahl der Windungen dieser Spule. Mathematisch wird die Flussverknüpfung Ψ\PsiΨ definiert als:

Ψ=N⋅Φ\Psi = N \cdot \PhiΨ=N⋅Φ

wobei NNN die Anzahl der Windungen und Φ\PhiΦ der magnetische Fluss ist. Der magnetische Fluss selbst wird berechnet als das Integral des magnetischen Feldes über eine Fläche, die von diesem Feld durchzogen wird. Eine wichtige Eigenschaft der Flussverknüpfung ist, dass sie die Induktivität einer Spule beeinflusst, da sie den Zusammenhang zwischen dem induzierten Spannungsabfall und der Änderung des Stroms in der Spule beschreibt. Wenn sich der magnetische Fluss ändert, wird durch die Induktionsgesetze eine Spannung erzeugt, die proportional zur Änderungsrate des Flusses ist. Dies ist eine Schlüsselkomponente in der Funktionsweise von Transformatoren und elektrischen Motoren.

Navier-Stokes-Turbulenzmodellierung

Das Navier-Stokes-Gleichungssystem beschreibt die Bewegungen von Fluiden und ist grundlegend für das Verständnis von Turbulenz. Turbulenz ist ein komplexes Phänomen, das durch chaotische Strömungen und Strömungsinstabilitäten gekennzeichnet ist. Bei der Modellierung von Turbulenz mit den Navier-Stokes-Gleichungen stehen Wissenschaftler vor der Herausforderung, die Vielzahl von Skalen und dynamischen Prozessen zu erfassen. Es gibt verschiedene Ansätze zur Turbulenzmodellierung, darunter:

  • Direkte Numerische Simulation (DNS): Diese Methode löst die Navier-Stokes-Gleichungen direkt und erfordert enorme Rechenressourcen.
  • Großes Eddy Simulation (LES): Hierbei werden die großen Strömungsstrukturen direkt simuliert, während die kleineren Turbulenzen modelliert werden.
  • Reynolds-zeitliche Mittelung: Bei diesem Ansatz werden die Gleichungen auf Mittelwerte angewendet, um die Effekte der Turbulenz statistisch zu erfassen.

Die Wahl des Modells hängt oft von der spezifischen Anwendung und den verfügbaren Rechenressourcen ab. Turbulenzmodellierung ist entscheidend in vielen Ingenieursdisziplinen, wie z.B. der Luftfahrt, dem Maschinenbau und der Umwelttechnik.

GARCH-Modell-Volatilitätsschätzung

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein weit verbreitetes Verfahren zur Schätzung der Volatilität von Zeitreihen, insbesondere in der Finanzwirtschaft. Es ermöglicht die Modellierung von variabler Volatilität, die sich über die Zeit verändert, anstatt eine konstante Volatilität anzunehmen, wie es bei vielen klassischen Modellen der Fall ist. Die Grundidee des GARCH-Modells ist, dass die heutige Volatilität durch vergangene Fehler und vergangene Volatilität beeinflusst wird. Mathematisch wird dies oft als:

σt2=α0+∑i=1qαiεt−i2+∑j=1pβjσt−j2\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2σt2​=α0​+i=1∑q​αi​εt−i2​+j=1∑p​βj​σt−j2​

dargestellt, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt ist, ε\varepsilonε die Fehlerterme und α\alphaα sowie β\betaβ die Modellparameter sind. Ein wesentliches Merkmal des GARCH-Modells ist, dass es Clusterung von Volatilität erfasst, was bedeutet, dass Perioden hoher Volatilität häufig auf Perioden hoher Volatilität folgen und umgekehrt. Dieses Modell ist besonders n

Martensitische Phase

Die martensitische Phase ist eine spezielle Art von Struktur, die in bestimmten Legierungen, insbesondere in Stahl, auftritt. Sie entsteht durch eine schnelle Abkühlung oder Abschreckung aus der austenitischen Phase, wodurch sich die Kristallstruktur verändert, ohne dass eine vollständige Umwandlung in eine andere Phase erfolgt. Diese Umwandlung führt zu einer sehr harten und spröden Struktur, die durch die einstufige Martensitbildung charakterisiert ist.

Die martensitische Phase hat typischerweise eine tetragonal verzerrte Struktur, die durch die Temperatur und die chemische Zusammensetzung des Materials beeinflusst wird. Um die Eigenschaften von martensitischen Stählen zu verbessern, wird häufig eine Wärmebehandlung durchgeführt, die das Material in einen duktileren Zustand überführt. In der Praxis sind martensitische Stähle aufgrund ihrer hohen Festigkeit und Härte in vielen Anwendungen, wie z.B. in der Werkzeugherstellung oder im Maschinenbau, sehr begehrt.

Trie-Strukturen

Ein Trie (ausgesprochen wie "try") ist eine spezielle Datenstruktur, die hauptsächlich zur effizienten Speicherung und Abfrage von Zeichenfolgen, insbesondere von Wörtern, verwendet wird. Es handelt sich um einen Baum, wobei jeder Knoten ein Zeichen repräsentiert und die Pfade von der Wurzel zu den Blättern vollständige Wörter darstellen. Die wichtigsten Eigenschaften eines Tries sind:

  • Effiziente Suche: Die Zeitkomplexität für das Suchen, Einfügen oder Löschen eines Wortes in einem Trie beträgt O(m)O(m)O(m), wobei mmm die Länge des Wortes ist.
  • Speicherplatz: Tries können mehr Speicherplatz benötigen als andere Datenstrukturen wie Hash-Tabellen, da sie für jedes Zeichen einen eigenen Knoten anlegen.
  • Präfix-Suche: Tries ermöglichen eine schnelle Suche nach allen Wörtern, die mit einem bestimmten Präfix beginnen, was sie besonders nützlich für Autovervollständigungssysteme macht.

Insgesamt sind Tries eine leistungsstarke Struktur für Anwendungen, bei denen Zeichenfolgenverarbeitung im Vordergrund steht, wie z.B. in Suchmaschinen oder Wörterbüchern.