Bilateral Monopoly Price Setting

Bilateral monopoly price setting occurs in a market structure where there is a single seller (monopoly) and a single buyer (monopsony) negotiating the price of a good or service. In this scenario, both parties have significant power: the seller can influence the price due to the lack of competition, while the buyer can affect the seller's production decisions due to their unique purchasing position. The equilibrium price is determined through negotiation, often resulting in a price that is higher than the competitive market price but lower than the monopolistic price that would occur in a seller-dominated market.

Key factors influencing the outcome include:

  • The costs and willingness to pay of the seller and the buyer.
  • The strategic behavior of both parties during negotiations.

Mathematically, the price PP can be represented as a function of the seller's marginal cost MCMC and the buyer's marginal utility MUMU, leading to an equilibrium condition where PP maximizes the joint surplus of both parties involved.

Other related terms

Kalman Gain

The Kalman Gain is a crucial component in the Kalman filter, an algorithm widely used for estimating the state of a dynamic system from a series of incomplete and noisy measurements. It represents the optimal weighting factor that balances the uncertainty in the prediction of the state from the model and the uncertainty in the measurements. Mathematically, the Kalman Gain KK is calculated using the following formula:

K=PpredHTHPpredHT+RK = \frac{P_{pred} H^T}{H P_{pred} H^T + R}

where:

  • PpredP_{pred} is the predicted estimate covariance,
  • HH is the observation model,
  • RR is the measurement noise covariance.

The gain essentially dictates how much influence the new measurement should have on the current estimate. A high Kalman Gain indicates that the measurement is reliable and should heavily influence the estimate, while a low gain suggests that the model prediction is more trustworthy than the measurement. This dynamic adjustment allows the Kalman filter to effectively track and predict states in various applications, from robotics to finance.

Monetary Policy

Monetary policy refers to the actions undertaken by a country's central bank to control the money supply, interest rates, and inflation. The primary goals of monetary policy are to promote economic stability, full employment, and sustainable growth. Central banks utilize various tools, such as open market operations, discount rates, and reserve requirements, to influence liquidity in the economy. For instance, by lowering interest rates, central banks can encourage borrowing and spending, which can stimulate economic activity. Conversely, raising rates can help cool down an overheating economy and control inflation. Overall, effective monetary policy is crucial for maintaining a balanced and healthy economy.

Buck Converter

A Buck Converter is a type of DC-DC converter that steps down voltage while stepping up current. It operates on the principle of storing energy in an inductor and then releasing it at a lower voltage. The converter uses a switching element (typically a transistor), a diode, an inductor, and a capacitor to efficiently convert a higher input voltage VinV_{in} to a lower output voltage VoutV_{out}. The output voltage can be controlled by adjusting the duty cycle of the switching element, defined as the ratio of the time the switch is on to the total time of one cycle. The efficiency of a Buck Converter can be quite high, often exceeding 90%, making it ideal for battery-operated devices and power management applications.

Key advantages of Buck Converters include:

  • High efficiency: Minimizes energy loss.
  • Compact size: Suitable for applications with space constraints.
  • Adjustable output: Easily tuned to specific voltage requirements.

Viterbi Algorithm In Hmm

The Viterbi algorithm is a dynamic programming algorithm used for finding the most likely sequence of hidden states, known as the Viterbi path, in a Hidden Markov Model (HMM). It operates by recursively calculating the probabilities of the most likely states at each time step, given the observed data. The algorithm maintains a matrix where each entry represents the highest probability of reaching a certain state at a specific time, along with backpointer information to reconstruct the optimal path.

The process can be broken down into three main steps:

  1. Initialization: Set the initial probabilities based on the starting state and the observed data.
  2. Recursion: For each subsequent observation, update the probabilities by considering all possible transitions from the previous states and selecting the maximum.
  3. Termination: Identify the state with the highest probability at the final time step and backtrack using the pointers to construct the most likely sequence of states.

Mathematically, the probability of the Viterbi path can be expressed as follows:

Vt(j)=maxi(Vt1(i)aij)bj(Ot)V_t(j) = \max_{i}(V_{t-1}(i) \cdot a_{ij}) \cdot b_j(O_t)

where Vt(j)V_t(j) is the maximum probability of reaching state jj at time tt, aija_{ij} is the transition probability from state ii to state $ j

Envelope Theorem

The Envelope Theorem is a fundamental result in optimization and economic theory that describes how the optimal value of a function changes as parameters change. Specifically, it provides a way to compute the derivative of the optimal value function with respect to parameters without having to re-optimize the problem. If we consider an optimization problem where the objective function is f(x,θ)f(x, \theta) and θ\theta represents the parameters, the theorem states that the derivative of the optimal value function V(θ)V(\theta) can be expressed as:

dV(θ)dθ=f(x(θ),θ)θ\frac{dV(\theta)}{d\theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}

where x(θ)x^*(\theta) is the optimal solution that maximizes ff. This result is particularly useful in economics for analyzing how changes in external conditions or constraints affect the optimal choices of agents, allowing for a more straightforward analysis of comparative statics. Thus, the Envelope Theorem simplifies the process of understanding the impact of parameter changes on optimal decisions in various economic models.

Push-Relabel Algorithm

The Push-Relabel Algorithm is an efficient method for computing the maximum flow in a flow network. It operates on the principle of maintaining a preflow, which allows excess flow at nodes, and then adjusts this excess using two primary operations: push and relabel. In the push operation, the algorithm attempts to send flow from a node with excess flow to its neighbors, while in the relabel operation, it increases the height of a node when no more pushes can be made, effectively allowing for future pushes. The algorithm terminates when no node has excess flow except the source and sink, at which point the flow is maximized. The overall complexity of the Push-Relabel Algorithm is O(V3)O(V^3) in the worst case, where VV is the number of vertices in the network.

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.