Boundary Layer Theory is a concept in fluid dynamics that describes the behavior of fluid flow near a solid boundary. When a fluid flows over a surface, such as an airplane wing or a pipe wall, the velocity of the fluid at the boundary becomes zero due to the no-slip condition. This leads to the formation of a boundary layer, a thin region adjacent to the surface where the velocity of the fluid gradually increases from zero at the boundary to the free stream velocity away from the surface. The behavior of the flow within this layer is crucial for understanding phenomena such as drag, lift, and heat transfer.
The thickness of the boundary layer can be influenced by several factors, including the Reynolds number, which characterizes the flow regime (laminar or turbulent). The governing equations for the boundary layer involve the Navier-Stokes equations, simplified under the assumption of a thin layer. Typically, the boundary layer can be described using the following approximation:
where and are the velocity components in the and directions, and is the kinematic viscosity of the fluid. Understanding this theory is
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.