StudentsEducators

Chandrasekhar Mass Derivation

The Chandrasekhar Mass is a fundamental limit in astrophysics that defines the maximum mass of a stable white dwarf star. It is derived from the principles of quantum mechanics and thermodynamics, particularly using the concept of electron degeneracy pressure, which arises from the Pauli exclusion principle. As a star exhausts its nuclear fuel, it collapses under gravity, and if its mass is below approximately 1.4 M⊙1.4 \, M_{\odot}1.4M⊙​ (solar masses), the electron degeneracy pressure can counteract this collapse, allowing the star to remain stable.

The derivation includes the balance of forces where the gravitational force (FgF_gFg​) acting on the star is balanced by the electron degeneracy pressure (FeF_eFe​), leading to the condition:

Fg=FeF_g = F_eFg​=Fe​

This relationship can be expressed mathematically, ultimately leading to the conclusion that the Chandrasekhar mass limit is given by:

MCh≈0.7 ℏ2G3/2me5/3μe4/3≈1.4 M⊙M_{Ch} \approx \frac{0.7 \, \hbar^2}{G^{3/2} m_e^{5/3} \mu_e^{4/3}} \approx 1.4 \, M_{\odot}MCh​≈G3/2me5/3​μe4/3​0.7ℏ2​≈1.4M⊙​

where ℏ\hbarℏ is the reduced Planck's constant, GGG is the gravitational constant, mem_eme​ is the mass of an electron, and $

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Mundell-Fleming Model

The Mundell-Fleming model is an economic theory that describes the relationship between an economy's exchange rate, interest rate, and output in an open economy. It extends the IS-LM framework to incorporate international trade and capital mobility. The model posits that under perfect capital mobility, monetary policy becomes ineffective when the exchange rate is fixed, while fiscal policy can still influence output. Conversely, if the exchange rate is flexible, monetary policy can affect output, but fiscal policy has limited impact due to crowding-out effects.

Key implications of the model include:

  • Interest Rate Parity: Capital flows will adjust to equalize returns across countries.
  • Exchange Rate Regime: The effectiveness of monetary and fiscal policies varies significantly between fixed and flexible exchange rate systems.
  • Policy Trade-offs: Policymakers must navigate the trade-offs between domestic economic goals and international competitiveness.

The Mundell-Fleming model is crucial for understanding how small open economies interact with global markets and respond to various fiscal and monetary policy measures.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) is a powerful computational technique used to study quantum systems through stochastic sampling methods. It leverages the principles of quantum mechanics and statistical mechanics to obtain approximate solutions to the Schrödinger equation, particularly for many-body systems where traditional methods become intractable. The core idea is to represent quantum states using random sampling, allowing researchers to calculate properties like energy levels, particle distributions, and correlation functions.

QMC methods can be classified into several types, including Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC). In VMC, a trial wave function is optimized to minimize the energy expectation value, while DMC simulates the time evolution of a quantum system, effectively projecting out the ground state. The accuracy of QMC results often increases with the number of samples, making it a valuable tool in fields such as condensed matter physics and quantum chemistry. Despite its strengths, QMC is computationally demanding and can struggle with systems exhibiting strong correlations or complex geometries.

Multijunction Photovoltaics

Multijunction photovoltaics (MJPs) are advanced solar cell technologies designed to increase the efficiency of solar energy conversion by utilizing multiple semiconductor layers, each tailored to absorb different segments of the solar spectrum. Unlike traditional single-junction solar cells, which are limited by the Shockley-Queisser limit (approximately 33.7% efficiency), MJPs can achieve efficiencies exceeding 40% under concentrated sunlight conditions. The layers are typically arranged in a manner where the top layer absorbs high-energy photons, while the lower layers capture lower-energy photons, allowing for a broader spectrum utilization.

Key advantages of multijunction photovoltaics include:

  • Enhanced efficiency through the combination of materials with varying bandgaps.
  • Improved performance in concentrated solar power applications.
  • Potential for reduced land use and lower overall system costs due to higher output per unit area.

Overall, MJPs represent a significant advancement in solar technology and hold promise for future energy solutions.

Cellular Automata Modeling

Cellular Automata (CA) modeling is a computational approach used to simulate complex systems and phenomena through discrete grids of cells, each of which can exist in a finite number of states. Each cell's state changes over time based on a set of rules that consider the states of neighboring cells, making CA an effective tool for exploring dynamic systems. These models are particularly useful in fields such as physics, biology, and social sciences, where they help in understanding patterns and behaviors, such as population dynamics or the spread of diseases.

The simplest example is the Game of Life, where each cell can be either "alive" or "dead," and its next state is determined by the number of live neighbors it has. Mathematically, the state of a cell Ci,jC_{i,j}Ci,j​ at time t+1t+1t+1 can be expressed as a function of its current state Ci,j(t)C_{i,j}(t)Ci,j​(t) and the states of its neighbors Ni,j(t)N_{i,j}(t)Ni,j​(t):

Ci,j(t+1)=f(Ci,j(t),Ni,j(t))C_{i,j}(t+1) = f(C_{i,j}(t), N_{i,j}(t))Ci,j​(t+1)=f(Ci,j​(t),Ni,j​(t))

Through this modeling technique, researchers can visualize and predict the evolution of systems over time, revealing underlying structures and emergent behaviors that may not be immediately apparent.

Bode Gain Margin

The Bode Gain Margin is a critical parameter in control theory that measures the stability of a feedback control system. It represents the amount of gain increase that can be tolerated before the system becomes unstable. Specifically, it is defined as the difference in decibels (dB) between the gain at the phase crossover frequency (where the phase shift is -180 degrees) and a gain of 1 (0 dB). If the gain margin is positive, the system is stable; if it is negative, the system is unstable.

To express this mathematically, if G(jω)G(j\omega)G(jω) is the open-loop transfer function evaluated at the frequency ω\omegaω where the phase is -180 degrees, the gain margin GMGMGM can be calculated as:

GM=20log⁡10(1∣G(jω)∣)GM = 20 \log_{10} \left( \frac{1}{|G(j\omega)|} \right)GM=20log10​(∣G(jω)∣1​)

where ∣G(jω)∣|G(j\omega)|∣G(jω)∣ is the magnitude of the transfer function at the phase crossover frequency. A higher gain margin indicates a more robust system, providing a greater buffer against variations in system parameters or external disturbances.

Cayley-Hamilton

The Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic polynomial. For a given n×nn \times nn×n matrix AAA, the characteristic polynomial p(λ)p(\lambda)p(λ) is defined as

p(λ)=det⁡(A−λI)p(\lambda) = \det(A - \lambda I)p(λ)=det(A−λI)

where III is the identity matrix and λ\lambdaλ is a scalar. According to the theorem, if we substitute the matrix AAA into its characteristic polynomial, we obtain

p(A)=0p(A) = 0p(A)=0

This means that if you compute the polynomial using the matrix AAA in place of the variable λ\lambdaλ, the result will be the zero matrix. The Cayley-Hamilton theorem has important implications in various fields, such as control theory and systems dynamics, where it is used to solve differential equations and analyze system stability.