StudentsEducators

Cournot Competition

Cournot Competition is a model of oligopoly in which firms compete on the quantity of output they produce, rather than on prices. In this framework, each firm makes an assumption about the quantity produced by its competitors and chooses its own production level to maximize profit. The key concept is that firms simultaneously decide how much to produce, leading to a Nash equilibrium where no firm can increase its profit by unilaterally changing its output. The equilibrium quantities can be derived from the reaction functions of the firms, which show how one firm's optimal output depends on the output of the others. Mathematically, if there are two firms, the reaction functions can be expressed as:

q1=R1(q2)q_1 = R_1(q_2)q1​=R1​(q2​) q2=R2(q1)q_2 = R_2(q_1)q2​=R2​(q1​)

where q1q_1q1​ and q2q_2q2​ represent the quantities produced by Firm 1 and Firm 2 respectively. The outcome of Cournot competition typically results in a lower total output and higher prices compared to perfect competition, illustrating the market power retained by firms in an oligopolistic market.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Phase-Locked Loop

A Phase-Locked Loop (PLL) is an electronic control system that synchronizes an output signal's phase with a reference signal. It consists of three key components: a phase detector, a low-pass filter, and a voltage-controlled oscillator (VCO). The phase detector compares the phase of the input signal with the phase of the output signal from the VCO, generating an error signal that represents the phase difference. This error signal is then filtered to remove high-frequency noise before being used to adjust the VCO's frequency, thus locking the output to the input signal's phase and frequency.

PLLs are widely used in various applications, such as:

  • Clock generation in digital circuits
  • Frequency synthesis in communication systems
  • Demodulation in phase modulation systems

Mathematically, the relationship between the input frequency finf_{in}fin​ and the output frequency foutf_{out}fout​ can be expressed as:

fout=K⋅finf_{out} = K \cdot f_{in}fout​=K⋅fin​

where KKK is the loop gain of the PLL. This dynamic system allows for precise frequency control and stability in electronic applications.

Tobin Tax

The Tobin Tax is a proposed tax on international financial transactions, named after the economist James Tobin, who first introduced the idea in the 1970s. The primary aim of this tax is to stabilize foreign exchange markets by discouraging excessive speculation and volatility. By imposing a small tax on currency trades, it is believed that traders would be less likely to engage in short-term speculative transactions, leading to a more stable financial environment.

The proposed rate is typically very low, often suggested at around 0.1% to 0.25%, which would be minimal enough not to deter legitimate trade but significant enough to affect speculative practices. Additionally, the revenues generated from the Tobin Tax could be used for public goods, such as funding development projects or addressing global challenges like climate change.

Arrow’S Theorem

Arrow's Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, ist ein fundamentales Ergebnis der Sozialwahltheorie, das die Herausforderungen bei der Aggregation individueller Präferenzen zu einer kollektiven Entscheidung beschreibt. Es besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine Wahlregel zu finden, die eine Reihe von wünschenswerten Eigenschaften erfüllt. Diese Eigenschaften sind: Nicht-Diktatur, Vollständigkeit, Transitivität, Unabhängigkeit von irrelevanten Alternativen und Pareto-Effizienz.

Das bedeutet, dass selbst wenn Wähler ihre Präferenzen unabhängig und rational ausdrücken, es keine Wahlmethode gibt, die diese Bedingungen für alle möglichen Wählerpräferenzen gleichzeitig erfüllt. In einfacher Form führt Arrow's Theorem zu der Erkenntnis, dass die Suche nach einer "perfekten" Abstimmungsregel, die die kollektiven Präferenzen fair und konsistent darstellt, letztlich zum Scheitern verurteilt ist.

Fixed-Point Iteration

Fixed-Point Iteration is a numerical method used to find solutions to equations of the form x=g(x)x = g(x)x=g(x), where ggg is a continuous function. The process starts with an initial guess x0x_0x0​ and iteratively generates new approximations using the formula xn+1=g(xn)x_{n+1} = g(x_n)xn+1​=g(xn​). This iteration continues until the results converge to a fixed point, defined as a point where g(x)=xg(x) = xg(x)=x. Convergence of the method depends on the properties of the function ggg; specifically, if the derivative g′(x)g'(x)g′(x) is within the interval (−1,1)(-1, 1)(−1,1) near the fixed point, the method is likely to converge. It is important to check whether the initial guess is within a suitable range to ensure that the iterations approach the fixed point rather than diverging.

Runge-Kutta Stability Analysis

Runge-Kutta Stability Analysis refers to the examination of the stability properties of numerical methods, specifically the Runge-Kutta family of methods, used for solving ordinary differential equations (ODEs). Stability in this context indicates how errors in the numerical solution behave as computations progress, particularly when applied to stiff equations or long-time integrations.

A common approach to analyze stability involves examining the stability region of the method in the complex plane, which is defined by the values of the stability function R(z)R(z)R(z). Typically, this function is derived from a test equation of the form y′=λyy' = \lambda yy′=λy, where λ\lambdaλ is a complex parameter. The method is stable for values of zzz (where z=hλz = h \lambdaz=hλ and hhh is the step size) that lie within the stability region.

For instance, the classical fourth-order Runge-Kutta method has a relatively large stability region, making it suitable for a wide range of problems, while implicit methods, such as the backward Euler method, can handle stiffer equations effectively. Understanding these properties is crucial for choosing the right numerical method based on the specific characteristics of the differential equations being solved.

Plasmonic Waveguides

Plasmonic waveguides are structures that guide surface plasmons, which are coherent oscillations of free electrons at the interface between a metal and a dielectric material. These waveguides enable the confinement and transmission of light at dimensions smaller than the wavelength of the light itself, making them essential for applications in nanophotonics and optical communications. The unique properties of plasmonic waveguides arise from the interaction between electromagnetic waves and the collective oscillations of electrons in metals, leading to phenomena such as superlensing and enhanced light-matter interactions.

Typically, there are several types of plasmonic waveguides, including:

  • Metallic thin films: These can support surface plasmons and are often used in sensors.
  • Metal nanostructures: These include nanoparticles and nanorods that can manipulate light at the nanoscale.
  • Plasmonic slots: These are designed to enhance field confinement and can be used in integrated photonic circuits.

The effective propagation of surface plasmons is described by the dispersion relation, which depends on the permittivity of both the metal and the dielectric, typically represented in a simplified form as:

k=ωcεmεdεm+εdk = \frac{\omega}{c} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}}k=cω​εm​+εd​εm​εd​​​

where kkk is the wave