StudentsEducators

Efficient Market Hypothesis Weak Form

The Efficient Market Hypothesis (EMH) Weak Form posits that current stock prices reflect all past trading information, including historical prices and volumes. This implies that technical analysis, which relies on past price movements to forecast future price changes, is ineffective for generating excess returns. According to this theory, any patterns or trends that can be observed in historical data are already incorporated into current prices, making it impossible to consistently outperform the market through such methods.

Additionally, the weak form suggests that price movements are largely random and follow a random walk, meaning that future price changes are independent of past price movements. This can be mathematically represented as:

Pt=Pt−1+ϵtP_t = P_{t-1} + \epsilon_tPt​=Pt−1​+ϵt​

where PtP_tPt​ is the price at time ttt, Pt−1P_{t-1}Pt−1​ is the price at the previous time period, and ϵt\epsilon_tϵt​ represents a random error term. Overall, the weak form of EMH underlines the importance of market efficiency and challenges the validity of strategies based solely on historical data.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Perron-Frobenius Eigenvalue Theorem

The Perron-Frobenius Eigenvalue Theorem is a fundamental result in linear algebra that applies to non-negative matrices, which are matrices where all entries are greater than or equal to zero. This theorem states that if AAA is a square, irreducible, non-negative matrix, then it has a unique largest eigenvalue, known as the Perron-Frobenius eigenvalue λ\lambdaλ. Furthermore, this eigenvalue is positive, and there exists a corresponding positive eigenvector vvv such that Av=λvAv = \lambda vAv=λv.

Key implications of this theorem include:

  • The eigenvalue λ\lambdaλ is the dominant eigenvalue, meaning it is greater than the absolute values of all other eigenvalues.
  • The positivity of the eigenvector implies that the dynamics described by the matrix AAA can be interpreted in various applications, such as population studies or economic models, reflecting growth and conservation properties.

Overall, the Perron-Frobenius theorem provides critical insights into the behavior of systems modeled by non-negative matrices, ensuring stability and predictability in their dynamics.

Hilbert Space

A Hilbert space is a fundamental concept in functional analysis and quantum mechanics, representing a complete inner product space. It is characterized by a set of vectors that can be added together and multiplied by scalars, which allows for the definition of geometric concepts such as angles and distances. Formally, a Hilbert space HHH is a vector space equipped with an inner product ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ that satisfies the following properties:

  • Linearity: ⟨ax+by,z⟩=a⟨x,z⟩+b⟨y,z⟩\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle⟨ax+by,z⟩=a⟨x,z⟩+b⟨y,z⟩ for any vectors x,y,zx, y, zx,y,z and scalars a,ba, ba,b.
  • Conjugate symmetry: ⟨x,y⟩=⟨y,x⟩‾\langle x, y \rangle = \overline{\langle y, x \rangle}⟨x,y⟩=⟨y,x⟩​.
  • Positive definiteness: ⟨x,x⟩≥0\langle x, x \rangle \geq 0⟨x,x⟩≥0 with equality if and only if x=0x = 0x=0.

Moreover, a Hilbert space is complete, meaning that every Cauchy sequence of vectors in the space converges to a limit that is also within the space. Examples of Hilbert spaces include Rn\mathbb{R}^nRn, Cn\mathbb{C}^nCn, and the

Wavelet Transform

The Wavelet Transform is a mathematical technique used to analyze and represent data in a way that captures both frequency and location information. Unlike the traditional Fourier Transform, which only provides frequency information, the Wavelet Transform decomposes a signal into components that can have localized time and frequency characteristics. This is achieved by applying a set of functions called wavelets, which are small oscillating waves that can be scaled and translated.

The transformation can be expressed mathematically as:

W(a,b)=∫−∞∞f(t)ψa,b(t)dtW(a, b) = \int_{-\infty}^{\infty} f(t) \psi_{a,b}(t) dtW(a,b)=∫−∞∞​f(t)ψa,b​(t)dt

where W(a,b)W(a, b)W(a,b) represents the wavelet coefficients, f(t)f(t)f(t) is the original signal, and ψa,b(t)\psi_{a,b}(t)ψa,b​(t) is the wavelet function adjusted by scale aaa and translation bbb. The resulting coefficients can be used for various applications, including signal compression, denoising, and feature extraction in fields such as image processing and financial data analysis.

Carnot Cycle

The Carnot Cycle is a theoretical thermodynamic cycle that serves as a standard for the efficiency of heat engines. It consists of four reversible processes: two isothermal (constant temperature) processes and two adiabatic (no heat exchange) processes. In the first isothermal expansion phase, the working substance absorbs heat QHQ_HQH​ from a high-temperature reservoir, doing work on the surroundings. During the subsequent adiabatic expansion, the substance expands without heat transfer, leading to a drop in temperature.

Next, in the second isothermal process, the working substance releases heat QCQ_CQC​ to a low-temperature reservoir while undergoing isothermal compression. Finally, the cycle completes with an adiabatic compression, where the temperature rises without heat exchange, returning to the initial state. The efficiency η\etaη of a Carnot engine is given by the formula:

η=1−TCTH\eta = 1 - \frac{T_C}{T_H}η=1−TH​TC​​

where TCT_CTC​ is the absolute temperature of the cold reservoir and THT_HTH​ is the absolute temperature of the hot reservoir. This cycle highlights the fundamental limits of efficiency for all real heat engines.

New Keynesian Sticky Prices

The concept of New Keynesian Sticky Prices refers to the idea that prices of goods and services do not adjust instantaneously to changes in economic conditions, which can lead to short-term market inefficiencies. This stickiness arises from various factors, including menu costs (the costs associated with changing prices), contracts that fix prices for a certain period, and the desire of firms to maintain stable customer relationships. As a result, when demand shifts—such as during an economic boom or recession—firms may not immediately raise or lower their prices, leading to output gaps and unemployment.

Mathematically, this can be expressed through the New Keynesian Phillips Curve, which relates inflation (π\piπ) to expected future inflation (E[πt+1]\mathbb{E}[\pi_{t+1}]E[πt+1​]) and the output gap (yty_tyt​):

πt=βE[πt+1]+κyt\pi_t = \beta \mathbb{E}[\pi_{t+1}] + \kappa y_tπt​=βE[πt+1​]+κyt​

where β\betaβ is a discount factor and κ\kappaκ measures the sensitivity of inflation to the output gap. This framework highlights the importance of monetary policy in managing expectations and stabilizing the economy, especially in the face of shocks.

Synthetic Gene Circuits Modeling

Synthetic gene circuits modeling involves designing and analyzing networks of gene interactions to achieve specific biological functions. By employing principles from systems biology, researchers can create customized genetic circuits that mimic natural regulatory systems or perform novel tasks. These circuits can be represented mathematically, often using differential equations to describe the dynamics of gene expression, protein production, and the interactions between different components.

Key components of synthetic gene circuits include:

  • Promoters: DNA sequences that initiate transcription.
  • Repressors: Proteins that inhibit gene expression.
  • Activators: Proteins that enhance gene expression.
  • Feedback loops: Mechanisms that can regulate the output of the circuit based on its own activity.

By simulating these interactions, scientists can predict the behavior of synthetic circuits under various conditions, facilitating the development of applications in fields such as biotechnology, medicine, and environmental science.