StudentsEducators

Einstein Coefficients

Einstein Coefficients are fundamental parameters that describe the probabilities of absorption, spontaneous emission, and stimulated emission of photons by atoms or molecules. They are denoted as A21A_{21}A21​, B12B_{12}B12​, and B21B_{21}B21​, where:

  • A21A_{21}A21​ represents the spontaneous emission rate from an excited state ∣2⟩|2\rangle∣2⟩ to a lower energy state ∣1⟩|1\rangle∣1⟩.
  • B12B_{12}B12​ and B21B_{21}B21​ are the stimulated emission and absorption coefficients, respectively, relating to the interaction with an external electromagnetic field.

These coefficients are crucial in understanding various phenomena in quantum mechanics and spectroscopy, as they provide a quantitative framework for predicting how light interacts with matter. The relationships among these coefficients are encapsulated in the Einstein relations, which connect the spontaneous and stimulated processes under thermal equilibrium conditions. Specifically, the ratio of A21A_{21}A21​ to the BBB coefficients is related to the energy difference between the states and the temperature of the system.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Adaboost

Adaboost, short for Adaptive Boosting, is a powerful ensemble learning technique that combines multiple weak classifiers to form a strong classifier. The primary idea behind Adaboost is to sequentially train a series of classifiers, where each subsequent classifier focuses on the mistakes made by the previous ones. It assigns weights to each training instance, increasing the weight for instances that were misclassified, thereby emphasizing their importance in the learning process.

The final model is constructed by combining the outputs of all the weak classifiers, weighted by their accuracy. Mathematically, the predicted output H(x)H(x)H(x) of the ensemble is given by:

H(x)=∑m=1Mαmhm(x)H(x) = \sum_{m=1}^{M} \alpha_m h_m(x)H(x)=m=1∑M​αm​hm​(x)

where hm(x)h_m(x)hm​(x) is the m-th weak classifier and αm\alpha_mαm​ is its corresponding weight. This approach improves the overall performance and robustness of the model, making Adaboost widely used in various applications such as image classification and text categorization.

Lamb Shift

The Lamb Shift refers to a small difference in energy levels of the hydrogen atom that arises from quantum electrodynamics (QED) effects. Specifically, it is the splitting of the energy levels of the 2S and 2P states of hydrogen, which was first measured by Willis Lamb and Robert Retherford in 1947. This phenomenon occurs due to the interactions between the electron and vacuum fluctuations of the electromagnetic field, leading to shifts in the energy levels that are not predicted by the Dirac equation alone.

The Lamb Shift can be understood as a manifestation of the electron's coupling to virtual photons, causing a slight energy shift that can be expressed mathematically as:

ΔE≈e24πϵ0⋅∫∣ψ(0)∣2r2dr\Delta E \approx \frac{e^2}{4\pi \epsilon_0} \cdot \int \frac{|\psi(0)|^2}{r^2} drΔE≈4πϵ0​e2​⋅∫r2∣ψ(0)∣2​dr

where ψ(0)\psi(0)ψ(0) is the wave function of the electron at the nucleus. The experimental confirmation of the Lamb Shift was crucial in validating QED and has significant implications for our understanding of atomic structure and fundamental interactions in physics.

Brownian Motion

Brownian Motion is the random movement of microscopic particles suspended in a fluid (liquid or gas) as they collide with fast-moving atoms or molecules in the medium. This phenomenon was named after the botanist Robert Brown, who first observed it in pollen grains in 1827. The motion is characterized by its randomness and can be described mathematically as a stochastic process, where the position of the particle at time ttt can be expressed as a continuous-time random walk.

Mathematically, Brownian motion B(t)B(t)B(t) has several key properties:

  • B(0)=0B(0) = 0B(0)=0 (the process starts at the origin),
  • B(t)B(t)B(t) has independent increments (the future direction of motion does not depend on the past),
  • The increments B(t+s)−B(t)B(t+s) - B(t)B(t+s)−B(t) follow a normal distribution with mean 0 and variance sss, for any s≥0s \geq 0s≥0.

This concept has significant implications in various fields, including physics, finance (where it models stock price movements), and mathematics, particularly in the theory of stochastic calculus.

Supply Shocks

Supply shocks refer to unexpected events that significantly disrupt the supply of goods and services in an economy. These shocks can be either positive or negative; a negative supply shock typically results in a sudden decrease in supply, leading to higher prices and potential shortages, while a positive supply shock can lead to an increase in supply, often resulting in lower prices. Common causes of supply shocks include natural disasters, geopolitical events, technological changes, and sudden changes in regulation. The impact of a supply shock can be analyzed using the basic supply and demand framework, where a shift in the supply curve alters the equilibrium price and quantity in the market. For instance, if a negative supply shock occurs, the supply curve shifts leftward, which can be represented as:

S1→S2S_1 \rightarrow S_2S1​→S2​

This shift results in a new equilibrium point, where the price rises and the quantity supplied decreases, illustrating the consequences of the shock on the economy.

Boyer-Moore

The Boyer-Moore algorithm is a highly efficient string-searching algorithm that is used to find a substring (the pattern) within a larger string (the text). It operates by utilizing two heuristics: the bad character rule and the good suffix rule. The bad character rule allows the algorithm to skip sections of the text when a mismatch occurs, by shifting the pattern to align with the last occurrence of the mismatched character in the pattern. The good suffix rule enhances this by shifting the pattern based on the matched suffix, allowing it to skip even more text.

The algorithm is particularly effective for large texts and patterns, with an average-case time complexity of O(n/m)O(n/m)O(n/m), where nnn is the length of the text and mmm is the length of the pattern. This makes Boyer-Moore significantly faster than simpler algorithms like the naive search, especially when the alphabet size is large or the pattern is relatively short compared to the text. Overall, its combination of heuristics allows for substantial reductions in the number of character comparisons needed during the search process.

Few-Shot Learning

Few-Shot Learning (FSL) is a subfield of machine learning that focuses on training models to recognize new classes with very limited labeled data. Unlike traditional approaches that require large datasets for each category, FSL seeks to generalize from only a few examples, typically ranging from one to a few dozen. This is particularly useful in scenarios where obtaining labeled data is costly or impractical.

In FSL, the model often employs techniques such as meta-learning, where it learns to learn from a variety of tasks, allowing it to adapt quickly to new ones. Common methods include using prototypical networks, which compute a prototype representation for each class based on the limited examples, or employing transfer learning where a pre-trained model is fine-tuned on the few available samples. Overall, Few-Shot Learning aims to mimic human-like learning capabilities, enabling machines to perform tasks with minimal data input.