StudentsEducators

Envelope Theorem

The Envelope Theorem is a fundamental result in optimization and economic theory that describes how the optimal value of a function changes as parameters change. Specifically, it provides a way to compute the derivative of the optimal value function with respect to parameters without having to re-optimize the problem. If we consider an optimization problem where the objective function is f(x,θ)f(x, \theta)f(x,θ) and θ\thetaθ represents the parameters, the theorem states that the derivative of the optimal value function V(θ)V(\theta)V(θ) can be expressed as:

dV(θ)dθ=∂f(x∗(θ),θ)∂θ\frac{dV(\theta)}{d\theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}dθdV(θ)​=∂θ∂f(x∗(θ),θ)​

where x∗(θ)x^*(\theta)x∗(θ) is the optimal solution that maximizes fff. This result is particularly useful in economics for analyzing how changes in external conditions or constraints affect the optimal choices of agents, allowing for a more straightforward analysis of comparative statics. Thus, the Envelope Theorem simplifies the process of understanding the impact of parameter changes on optimal decisions in various economic models.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Graphene Oxide Chemical Reduction

Graphene oxide (GO) is a derivative of graphene that contains various oxygen-containing functional groups such as hydroxyl, epoxide, and carboxyl groups. The chemical reduction of graphene oxide involves removing these oxygen groups to restore the electrical conductivity and structural integrity of graphene. This process can be achieved using various reducing agents, including hydrazine, sodium borohydride, or even green reducing agents like ascorbic acid. The reduction process not only enhances the electrical properties of graphene but also improves its mechanical strength and thermal conductivity. The overall reaction can be represented as:

GO+Reducing Agent→Reduced Graphene Oxide (rGO)+By-products\text{GO} + \text{Reducing Agent} \rightarrow \text{Reduced Graphene Oxide (rGO)} + \text{By-products}GO+Reducing Agent→Reduced Graphene Oxide (rGO)+By-products

Ultimately, the degree of reduction can be controlled to tailor the properties of the resulting material for specific applications in electronics, energy storage, and composite materials.

Endogenous Money Theory Post-Keynesian

Endogenous Money Theory (EMT) within the Post-Keynesian framework posits that the supply of money is determined by the demand for loans rather than being fixed by the central bank. This theory challenges the traditional view of money supply as exogenous, emphasizing that banks create money through lending when they extend credit to borrowers. As firms and households seek financing for investment and consumption, banks respond by generating deposits, effectively increasing the money supply.

In this context, the relationship can be summarized as follows:

  • Demand for loans drives money creation: When businesses want to invest, they approach banks for loans, prompting banks to create money.
  • Interest rates are influenced by the supply and demand for credit, rather than being solely controlled by central bank policies.
  • The role of the central bank is to ensure liquidity in the system and manage interest rates, but it does not directly control the total amount of money in circulation.

This understanding of money emphasizes the dynamic interplay between financial institutions and the economy, showcasing how monetary phenomena are deeply rooted in real economic activities.

Cournot Competition

Cournot Competition is a model of oligopoly in which firms compete on the quantity of output they produce, rather than on prices. In this framework, each firm makes an assumption about the quantity produced by its competitors and chooses its own production level to maximize profit. The key concept is that firms simultaneously decide how much to produce, leading to a Nash equilibrium where no firm can increase its profit by unilaterally changing its output. The equilibrium quantities can be derived from the reaction functions of the firms, which show how one firm's optimal output depends on the output of the others. Mathematically, if there are two firms, the reaction functions can be expressed as:

q1=R1(q2)q_1 = R_1(q_2)q1​=R1​(q2​) q2=R2(q1)q_2 = R_2(q_1)q2​=R2​(q1​)

where q1q_1q1​ and q2q_2q2​ represent the quantities produced by Firm 1 and Firm 2 respectively. The outcome of Cournot competition typically results in a lower total output and higher prices compared to perfect competition, illustrating the market power retained by firms in an oligopolistic market.

Lagrange Density

The Lagrange density is a fundamental concept in theoretical physics, particularly in the fields of classical mechanics and quantum field theory. It is a scalar function that encapsulates the dynamics of a physical system in terms of its fields and their derivatives. Typically denoted as L\mathcal{L}L, the Lagrange density is used to construct the Lagrangian of a system, which is integrated over space to yield the action SSS:

S=∫d4x LS = \int d^4x \, \mathcal{L}S=∫d4xL

The choice of Lagrange density is critical, as it must reflect the symmetries and interactions of the system under consideration. In many cases, the Lagrange density is expressed in terms of fields ϕ\phiϕ and their derivatives, capturing kinetic and potential energy contributions. By applying the principle of least action, one can derive the equations of motion governing the dynamics of the fields involved. This framework not only provides insights into classical systems but also extends to quantum theories, facilitating the description of particle interactions and fundamental forces.

Solow Residual Productivity

The Solow Residual Productivity, named after economist Robert Solow, represents a measure of the portion of output in an economy that cannot be attributed to the accumulation of capital and labor. In essence, it captures the effects of technological progress and efficiency improvements that drive economic growth. The formula to calculate the Solow residual is derived from the Cobb-Douglas production function:

Y=A⋅Kα⋅L1−αY = A \cdot K^\alpha \cdot L^{1-\alpha}Y=A⋅Kα⋅L1−α

where YYY is total output, AAA is the total factor productivity (TFP), KKK is capital, LLL is labor, and α\alphaα is the output elasticity of capital. By rearranging this equation, the Solow residual AAA can be isolated, highlighting the contributions of technological advancements and other factors that increase productivity without requiring additional inputs. Therefore, the Solow Residual is crucial for understanding long-term economic growth, as it emphasizes the role of innovation and efficiency beyond mere input increases.

Mems Gyroscope

A MEMS gyroscope (Micro-Electro-Mechanical System gyroscope) is a tiny device that measures angular velocity or orientation by detecting the rate of rotation around a specific axis. These gyroscopes utilize the principles of angular momentum and the Coriolis effect, where a vibrating mass experiences a shift in motion when subjected to rotation. The MEMS technology allows for the fabrication of these sensors at a microscale, making them compact and energy-efficient, which is crucial for applications in smartphones, drones, and automotive systems.

The device typically consists of a vibrating structure that, when rotated, experiences a change in its vibration pattern. This change can be quantified and converted into angular velocity, which can be further used in algorithms to determine the orientation of the device. Key advantages of MEMS gyroscopes include low cost, small size, and high integration capabilities with other sensors, making them essential components in modern inertial measurement units (IMUs).