StudentsEducators

Ferroelectric Thin Films

Ferroelectric thin films are materials that exhibit ferroelectricity, a property that allows them to have a spontaneous electric polarization that can be reversed by the application of an external electric field. These films are typically only a few nanometers to several micrometers thick and are commonly made from materials such as lead zirconate titanate (PZT) or barium titanate (BaTiO₃). The thin film structure enables unique electronic and optical properties, making them valuable for applications in non-volatile memory devices, sensors, and actuators.

The ferroelectric behavior in these films is largely influenced by their thickness, crystallographic orientation, and the presence of defects or interfaces. The polarization PPP in ferroelectric materials can be described by the relation:

P=ϵ0χEP = \epsilon_0 \chi EP=ϵ0​χE

where ϵ0\epsilon_0ϵ0​ is the permittivity of free space, χ\chiχ is the susceptibility of the material, and EEE is the applied electric field. The ability to manipulate the polarization in ferroelectric thin films opens up possibilities for advanced technological applications, particularly in the field of microelectronics.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Cournot Competition Reaction Function

The Cournot Competition Reaction Function is a fundamental concept in oligopoly theory that describes how firms in a market adjust their output levels in response to the output choices of their competitors. In a Cournot competition model, each firm decides how much to produce based on the expected production levels of other firms, leading to a Nash equilibrium where no firm has an incentive to unilaterally change its production. The reaction function of a firm can be mathematically expressed as:

qi=Ri(q−i)q_i = R_i(q_{-i})qi​=Ri​(q−i​)

where qiq_iqi​ is the quantity produced by firm iii, and q−iq_{-i}q−i​ represents the total output produced by all other firms. The reaction function illustrates the interdependence of firms' decisions; if one firm increases its output, the others must adjust their production strategies to maximize their profits. The intersection of the reaction functions of all firms in the market determines the equilibrium quantities produced by each firm, showcasing the strategic nature of their interactions.

Nanoimprint Lithography

Nanoimprint Lithography (NIL) is a powerful nanofabrication technique that allows the creation of nanostructures with high precision and resolution. The process involves pressing a mold with nanoscale features into a thin film of a polymer or other material, which then deforms to replicate the mold's pattern. This method is particularly advantageous due to its low cost and high throughput compared to traditional lithography techniques like photolithography. NIL can achieve feature sizes down to 10 nm or even smaller, making it suitable for applications in fields such as electronics, optics, and biotechnology. Additionally, the technique can be applied to various substrates, including silicon, glass, and flexible materials, enhancing its versatility in different industries.

Dirichlet Kernel

The Dirichlet Kernel is a fundamental concept in the field of Fourier analysis, primarily used to express the partial sums of Fourier series. It is defined as follows:

Dn(x)=∑k=−nneikx=sin⁡((n+12)x)sin⁡(x2)D_n(x) = \sum_{k=-n}^{n} e^{ikx} = \frac{\sin((n + \frac{1}{2})x)}{\sin(\frac{x}{2})}Dn​(x)=k=−n∑n​eikx=sin(2x​)sin((n+21​)x)​

where nnn is a non-negative integer, and xxx is a real number. The kernel plays a crucial role in the convergence properties of Fourier series, particularly in determining how well a Fourier series approximates a function. The Dirichlet Kernel exhibits properties such as periodicity and symmetry, making it valuable in various applications, including signal processing and solving differential equations. Notably, it is associated with the phenomenon of Gibbs phenomenon, which describes the overshoot in the convergence of Fourier series near discontinuities.

Envelope Theorem

The Envelope Theorem is a fundamental result in optimization and economic theory that describes how the optimal value of a function changes as parameters change. Specifically, it provides a way to compute the derivative of the optimal value function with respect to parameters without having to re-optimize the problem. If we consider an optimization problem where the objective function is f(x,θ)f(x, \theta)f(x,θ) and θ\thetaθ represents the parameters, the theorem states that the derivative of the optimal value function V(θ)V(\theta)V(θ) can be expressed as:

dV(θ)dθ=∂f(x∗(θ),θ)∂θ\frac{dV(\theta)}{d\theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}dθdV(θ)​=∂θ∂f(x∗(θ),θ)​

where x∗(θ)x^*(\theta)x∗(θ) is the optimal solution that maximizes fff. This result is particularly useful in economics for analyzing how changes in external conditions or constraints affect the optimal choices of agents, allowing for a more straightforward analysis of comparative statics. Thus, the Envelope Theorem simplifies the process of understanding the impact of parameter changes on optimal decisions in various economic models.

Hodgkin-Huxley Model

The Hodgkin-Huxley model is a mathematical representation that describes how action potentials in neurons are initiated and propagated. Developed by Alan Hodgkin and Andrew Huxley in the early 1950s, this model is based on experiments conducted on the giant axon of the squid. It characterizes the dynamics of ion channels and the changes in membrane potential using a set of nonlinear differential equations.

The model includes variables that represent the conductances of sodium (gNag_{Na}gNa​) and potassium (gKg_{K}gK​) ions, alongside the membrane capacitance (CCC). The key equations can be summarized as follows:

CdVdt=−gNa(V−ENa)−gK(V−EK)−gL(V−EL)C \frac{dV}{dt} = -g_{Na}(V - E_{Na}) - g_{K}(V - E_{K}) - g_L(V - E_L)CdtdV​=−gNa​(V−ENa​)−gK​(V−EK​)−gL​(V−EL​)

where VVV is the membrane potential, ENaE_{Na}ENa​, EKE_{K}EK​, and ELE_LEL​ are the reversal potentials for sodium, potassium, and leak channels, respectively. Through its detailed analysis, the Hodgkin-Huxley model revolutionized our understanding of neuronal excitability and laid the groundwork for modern neuroscience.

Soft-Matter Self-Assembly

Soft-matter self-assembly refers to the spontaneous organization of soft materials, such as polymers, lipids, and colloids, into structured arrangements without the need for external guidance. This process is driven by thermodynamic and kinetic factors, where the components interact through weak forces like van der Waals forces, hydrogen bonds, and hydrophobic interactions. The result is the formation of complex structures, such as micelles, vesicles, and gels, which can exhibit unique properties useful in various applications, including drug delivery and nanotechnology.

Key aspects of soft-matter self-assembly include:

  • Scalability: The techniques can be applied at various scales, from molecular to macroscopic levels.
  • Reversibility: Many self-assembled structures can be disassembled and reassembled, allowing for dynamic systems.
  • Functionality: The assembled structures often possess emergent properties not found in the individual components.

Overall, soft-matter self-assembly represents a fascinating area of research that bridges the fields of physics, chemistry, and materials science.