StudentsEducators

Fiber Bragg Gratings

Fiber Bragg Gratings (FBGs) are a type of optical device used in fiber optics that reflect specific wavelengths of light while transmitting others. They are created by inducing a periodic variation in the refractive index of the optical fiber core. This periodic structure acts like a mirror for certain wavelengths, which are determined by the grating period Λ\LambdaΛ and the refractive index nnn of the fiber, following the Bragg condition given by the equation:

λB=2nΛ\lambda_B = 2n\LambdaλB​=2nΛ

where λB\lambda_BλB​ is the wavelength of light reflected. FBGs are widely used in various applications, including sensing, telecommunications, and laser technology, due to their ability to measure strain and temperature changes accurately. Their advantages include high sensitivity, immunity to electromagnetic interference, and the capability of being embedded within structures for real-time monitoring.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Perovskite Structure

The perovskite structure refers to a specific type of crystal structure that is characterized by the general formula ABX3ABX_3ABX3​, where AAA and BBB are cations of different sizes, and XXX is an anion, typically oxygen. This structure is named after the mineral perovskite (calcium titanium oxide, CaTiO3CaTiO_3CaTiO3​), which was first discovered in the Ural Mountains of Russia.

In the perovskite lattice, the larger AAA cations are located at the corners of a cube, while the smaller BBB cations occupy the center of the cube. The XXX anions are positioned at the face centers of the cube, creating a three-dimensional framework that can accommodate a variety of different ions, thus enabling a wide range of chemical compositions and properties. The unique structural flexibility of perovskites contributes to their diverse applications, particularly in areas such as solar cells, ferroelectrics, and superconductors.

Moreover, the ability to tune the properties of perovskite materials through compositional changes enhances their potential in optoelectronic devices and energy storage technologies.

Arithmetic Coding

Arithmetic Coding is a form of entropy encoding used in lossless data compression. Unlike traditional methods such as Huffman coding, which assigns a fixed-length code to each symbol, arithmetic coding encodes an entire message into a single number in the interval [0,1)[0, 1)[0,1). The process involves subdividing this range based on the probabilities of each symbol in the message: as each symbol is processed, the interval is narrowed down according to its cumulative frequency. For example, if a message consists of symbols AAA, BBB, and CCC with probabilities P(A)P(A)P(A), P(B)P(B)P(B), and P(C)P(C)P(C), the intervals for each symbol would be defined as follows:

  • A:[0,P(A))A: [0, P(A))A:[0,P(A))
  • B:[P(A),P(A)+P(B))B: [P(A), P(A) + P(B))B:[P(A),P(A)+P(B))
  • C:[P(A)+P(B),1)C: [P(A) + P(B), 1)C:[P(A)+P(B),1)

This method offers a more efficient representation of the message, especially with long sequences of symbols, as it can achieve better compression ratios by leveraging the cumulative probability distribution of the symbols. After the sequence is completely encoded, the final number can be rounded to create a binary output, making it suitable for various applications in data compression, such as in image and video coding.

Singular Value Decomposition Properties

Singular Value Decomposition (SVD) is a fundamental technique in linear algebra that decomposes a matrix AAA into three other matrices, expressed as A=UΣVTA = U \Sigma V^TA=UΣVT. Here, UUU is an orthogonal matrix whose columns are the left singular vectors, Σ\SigmaΣ is a diagonal matrix containing the singular values (which are non-negative and sorted in descending order), and VTV^TVT is the transpose of an orthogonal matrix whose columns are the right singular vectors.

Key properties of SVD include:

  • Rank: The rank of the matrix AAA is equal to the number of non-zero singular values in Σ\SigmaΣ.
  • Norm: The largest singular value in Σ\SigmaΣ corresponds to the spectral norm of AAA, which indicates the maximum stretch factor of the transformation represented by AAA.
  • Condition Number: The ratio of the largest to the smallest non-zero singular value gives the condition number, which provides insight into the numerical stability of the matrix.
  • Low-Rank Approximation: SVD can be used to approximate AAA by truncating the singular values and corresponding vectors, leading to efficient representations in applications such as data compression and noise reduction.

Overall, the properties of SVD make it a powerful tool in various fields, including statistics, machine learning, and signal processing.

Dirichlet Function

The Dirichlet function is a classic example in mathematical analysis, particularly in the study of real functions and their properties. It is defined as follows:

D(x)={1if x is rational0if x is irrationalD(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}D(x)={10​if x is rationalif x is irrational​

This function is notable for being discontinuous everywhere on the real number line. For any chosen point aaa, no matter how close we approach aaa using rational or irrational numbers, the function values oscillate between 0 and 1.

Key characteristics of the Dirichlet function include:

  • It is not Riemann integrable because the set of discontinuities is dense in R\mathbb{R}R.
  • However, it is Lebesgue integrable, and its integral over any interval is zero, since the measure of the rational numbers in any interval is zero.

The Dirichlet function serves as an important example in discussions of continuity, integrability, and the distinction between various types of convergence in analysis.

Fenwick Tree

A Fenwick Tree, also known as a Binary Indexed Tree (BIT), is a data structure that efficiently supports dynamic cumulative frequency tables. It allows for both point updates and prefix sum queries in O(log⁡n)O(\log n)O(logn) time, making it particularly useful for scenarios where data is frequently updated and queried. The tree is implemented as a one-dimensional array, where each element at index iii stores the sum of elements from the original array up to that index, but in a way that leverages binary representation for efficient updates and queries.

To update an element at index iii, the tree adjusts all relevant nodes in the array, which can be done by repeatedly adding the value and moving to the next index using the formula i+=i&−ii += i \& -ii+=i&−i. For querying the prefix sum up to index jjj, it aggregates values from the tree using j−=j&−jj -= j \& -jj−=j&−j until jjj is zero. Thus, Fenwick Trees are particularly effective in applications such as frequency counting, range queries, and dynamic programming.

Magnetic Monopole Theory

The Magnetic Monopole Theory posits the existence of magnetic monopoles, hypothetical particles that carry a net "magnetic charge". Unlike conventional magnets, which always have both a north and a south pole (making them dipoles), magnetic monopoles would exist as isolated north or south poles. This concept arose from attempts to unify electromagnetic and gravitational forces, suggesting that just as electric charges exist singly, so too could magnetic charges.

In mathematical terms, the existence of magnetic monopoles modifies Maxwell's equations, which describe classical electromagnetism. For instance, the divergence of the magnetic field ∇⋅B=0\nabla \cdot \mathbf{B} = 0∇⋅B=0 would be replaced by ∇⋅B=ρm\nabla \cdot \mathbf{B} = \rho_m∇⋅B=ρm​, where ρm\rho_mρm​ represents the magnetic charge density. Despite extensive searches, no experimental evidence has yet confirmed the existence of magnetic monopoles, but they remain a compelling topic in theoretical physics, especially in gauge theories and string theory.