StudentsEducators

Fourier Transform

The Fourier Transform is a mathematical operation that transforms a time-domain signal into its frequency-domain representation. It decomposes a function or a signal into its constituent frequencies, providing insight into the frequency components present in the original signal. Mathematically, the Fourier Transform of a continuous function f(t)f(t)f(t) is given by:

F(ω)=∫−∞∞f(t)e−iωtdtF(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} dtF(ω)=∫−∞∞​f(t)e−iωtdt

where F(ω)F(\omega)F(ω) is the frequency-domain representation, ω\omegaω is the angular frequency, and iii is the imaginary unit. This transformation is crucial in various fields such as signal processing, audio analysis, and image processing, as it allows for the manipulation and analysis of signals in the frequency domain. The inverse Fourier Transform can be used to revert back from the frequency domain to the time domain, highlighting the transformative nature of this operation.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hamming Distance

Hamming Distance is a metric used to measure the difference between two strings of equal length. It is defined as the number of positions at which the corresponding symbols differ. For example, the Hamming distance between the strings "karolin" and "kathrin" is 3, as they differ in three positions. This concept is particularly useful in various fields such as information theory, coding theory, and genetics, where it can be used to determine error rates in data transmission or to compare genetic sequences. To calculate the Hamming distance, one can use the formula:

d(x,y)=∑i=1n1 if xi≠yi else 0d(x, y) = \sum_{i=1}^{n} \text{1 if } x_i \neq y_i \text{ else } 0d(x,y)=i=1∑n​1 if xi​=yi​ else 0

where d(x,y)d(x, y)d(x,y) is the Hamming distance, nnn is the length of the strings, and xix_ixi​ and yiy_iyi​ are the symbols at position iii in strings xxx and yyy, respectively.

Dna Methylation In Epigenetics

DNA methylation is a crucial epigenetic mechanism that involves the addition of a methyl group (–CH₃) to the DNA molecule, typically at the cytosine bases of CpG dinucleotides. This modification can influence gene expression without altering the underlying DNA sequence, thereby playing a vital role in gene regulation. When methylation occurs in the promoter region of a gene, it often leads to transcriptional silencing, preventing the gene from being expressed. Conversely, low levels of methylation can be associated with active gene expression.

The dynamic nature of DNA methylation is essential for various biological processes, including development, cellular differentiation, and responses to environmental factors. Additionally, abnormalities in DNA methylation patterns are linked to various diseases, including cancer, highlighting its importance in both health and disease states.

Stochastic Differential Equation Models

Stochastic Differential Equation (SDE) models are mathematical frameworks that describe the behavior of systems influenced by random processes. These models extend traditional differential equations by incorporating stochastic processes, allowing for the representation of uncertainty and noise in a system’s dynamics. An SDE typically takes the form:

dXt=μ(Xt,t)dt+σ(Xt,t)dWtdX_t = \mu(X_t, t) dt + \sigma(X_t, t) dW_tdXt​=μ(Xt​,t)dt+σ(Xt​,t)dWt​

where XtX_tXt​ is the state variable, μ(Xt,t)\mu(X_t, t)μ(Xt​,t) represents the deterministic trend, σ(Xt,t)\sigma(X_t, t)σ(Xt​,t) is the volatility term, and dWtdW_tdWt​ denotes a Wiener process, which captures the stochastic aspect. SDEs are widely used in various fields, including finance for modeling stock prices and interest rates, in physics for particle movement, and in biology for population dynamics. By solving SDEs, researchers can gain insights into the expected behavior of complex systems over time, while accounting for inherent uncertainties.

Legendre Polynomial

Legendre Polynomials are a sequence of orthogonal polynomials that arise in solving problems in physics and engineering, particularly in the context of potential theory and quantum mechanics. They are denoted as Pn(x)P_n(x)Pn​(x), where nnn is a non-negative integer, and the polynomials are defined on the interval [−1,1][-1, 1][−1,1]. The Legendre polynomials can be generated using the following recursive relation:

P0(x)=1,P1(x)=x,Pn(x)=(2n−1)xPn−1(x)−(n−1)Pn−2(x)nP_0(x) = 1, \quad P_1(x) = x, \quad P_{n}(x) = \frac{(2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)}{n}P0​(x)=1,P1​(x)=x,Pn​(x)=n(2n−1)xPn−1​(x)−(n−1)Pn−2​(x)​

These polynomials have several important properties, including orthogonality:

∫−11Pm(x)Pn(x) dx=0for m≠n\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{for } m \neq n∫−11​Pm​(x)Pn​(x)dx=0for m=n

Additionally, they satisfy the Legendre differential equation:

(1−x2)d2Pndx2−2xdPndx+n(n+1)Pn=0(1-x^2) \frac{d^2P_n}{dx^2} - 2x \frac{dP_n}{dx} + n(n+1)P_n = 0(1−x2)dx2d2Pn​​−2xdxdPn​​+n(n+1)Pn​=0

Legendre polynomials are widely used in applications such as solving Laplace's equation in spherical coordinates, performing numerical integration (Gauss-Legendre quadrature), and

Revealed Preference

Revealed Preference is an economic theory that aims to understand consumer behavior by observing their choices rather than relying on their stated preferences. The fundamental idea is that if a consumer chooses one good over another when both are available, it reveals a preference for the chosen good. This concept is often encapsulated in the notion that preferences can be "revealed" through actual purchasing decisions.

For instance, if a consumer opts to buy apples instead of oranges when both are priced the same, we can infer that the consumer has a revealed preference for apples. This theory is particularly significant in utility theory and helps economists to construct demand curves and analyze consumer welfare without necessitating direct questioning about preferences. In mathematical terms, if a consumer chooses bundle AAA over BBB, we denote this preference as A≻BA \succ BA≻B, indicating that the preference for AAA is revealed through the choice made.

Maximum Bipartite Matching

Maximum Bipartite Matching is a fundamental problem in graph theory that aims to find the largest possible matching in a bipartite graph. A bipartite graph consists of two distinct sets of vertices, say UUU and VVV, such that every edge connects a vertex in UUU to a vertex in VVV. A matching is a set of edges that does not have any shared vertices, and the goal is to maximize the number of edges in this matching. The maximum matching is the matching that contains the largest number of edges possible.

To solve this problem, algorithms such as the Hopcroft-Karp algorithm can be utilized, which operates in O(EV)O(E \sqrt{V})O(EV​) time complexity, where EEE is the number of edges and VVV is the number of vertices in the graph. Applications of maximum bipartite matching can be seen in various fields such as job assignments, network flows, and resource allocation problems, making it a crucial concept in both theoretical and practical contexts.