Graph Neural Networks (GNNs) are a class of deep learning models specifically designed to process and analyze graph-structured data. Unlike traditional neural networks that operate on grid-like structures such as images or sequences, GNNs are capable of capturing the complex relationships and interactions between nodes (vertices) in a graph. They achieve this through message passing, where nodes exchange information with their neighbors to update their representations iteratively. A typical GNN can be mathematically represented as:
where is the hidden state of node at layer , and represents the set of neighbors of node . GNNs have found applications in various domains, including social network analysis, recommendation systems, and bioinformatics, due to their ability to effectively model non-Euclidean data. Their strength lies in the ability to generalize across different graph structures, making them a powerful tool for machine learning tasks involving relational data.
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.