StudentsEducators

Graphene Conductivity

Graphene, a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice, is renowned for its exceptional electrical conductivity. This remarkable property arises from its unique electronic structure, characterized by a linear energy-momentum relationship near the Dirac points, which leads to massless charge carriers. The high mobility of these carriers allows electrons to flow with minimal resistance, resulting in a conductivity that can exceed 106 S/m10^6 \, \text{S/m}106S/m.

Moreover, the conductivity of graphene can be influenced by various factors, such as temperature, impurities, and defects within the lattice. The relationship between conductivity σ\sigmaσ and the charge carrier density nnn can be described by the equation:

σ=neμ\sigma = n e \muσ=neμ

where eee is the elementary charge and μ\muμ is the mobility of the charge carriers. This makes graphene an attractive material for applications in flexible electronics, high-speed transistors, and advanced sensors, where high conductivity and minimal energy loss are crucial.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Avl Tree Rotations

AVL Trees are a type of self-balancing binary search tree, where the heights of the two child subtrees of any node differ by at most one. When an insertion or deletion operation causes this balance to be violated, rotations are performed to restore it. There are four types of rotations used in AVL Trees:

  1. Right Rotation: This is applied when a node becomes unbalanced due to a left-heavy subtree. The right rotation involves making the left child the new root of the subtree and adjusting the pointers accordingly.

  2. Left Rotation: This is the opposite of the right rotation and is used when a node becomes unbalanced due to a right-heavy subtree. Here, the right child becomes the new root of the subtree.

  3. Left-Right Rotation: This is a double rotation that combines a left rotation followed by a right rotation. It is used when a left child has a right-heavy subtree.

  4. Right-Left Rotation: Another double rotation that combines a right rotation followed by a left rotation, which is applied when a right child has a left-heavy subtree.

These rotations help to maintain the balance factor, defined as the height difference between the left and right subtrees, ensuring efficient operations on the tree.

Sliding Mode Control Applications

Sliding Mode Control (SMC) is a robust control strategy widely used in various applications due to its ability to handle uncertainties and disturbances effectively. Key applications include:

  1. Robotics: SMC is employed in robotic arms and manipulators to achieve precise trajectory tracking and ensure that the system remains stable despite external perturbations.
  2. Automotive Systems: In vehicle dynamics control, SMC helps in maintaining stability and improving performance under varying conditions, such as during skidding or rapid acceleration.
  3. Aerospace: The control of aircraft and spacecraft often utilizes SMC for attitude control and trajectory planning, ensuring robustness against model inaccuracies.
  4. Electrical Drives: SMC is applied in the control of electric motors to achieve high performance in speed and position control, particularly in applications requiring quick response times.

The fundamental principle of SMC is to drive the system's state to a predefined sliding surface, defined mathematically by the condition s(x)=0s(x) = 0s(x)=0, where s(x)s(x)s(x) is a function of the system state xxx. Once on this surface, the system's dynamics are governed by reduced-order dynamics, leading to improved robustness and performance.

Priority Queue Implementation

A priority queue is an abstract data type that operates similarly to a regular queue but where each element has a priority associated with it. In this implementation, elements are dequeued based on their priority rather than their order in the queue. Typically, a higher priority element is processed before a lower priority one, even if the lower priority element was added first.

Priority queues can be implemented using various data structures, including:

  • Heaps (most common): A binary heap, either min-heap or max-heap, allows for efficient insertion and extraction of the highest (or lowest) priority element in O(log⁡n)O(\log n)O(logn) time.
  • Unsorted Lists: Inserting an element takes O(1)O(1)O(1) time, but finding and removing the highest priority element takes O(n)O(n)O(n) time.
  • Sorted Lists: Both insertion and removal can be achieved in O(n)O(n)O(n) time, but maintaining the order of elements can be inefficient.

The choice of implementation depends on the specific requirements of the application, such as the frequency of insertions versus deletions.

Van Emde Boas

The Van Emde Boas tree is a data structure that provides efficient operations for dynamic sets of integers. It supports basic operations such as insert, delete, and search in O(log⁡log⁡U)O(\log \log U)O(loglogU) time, where UUU is the universe size of the integers being stored. This efficiency is achieved by using a combination of a binary tree structure and a hash table-like approach, which allows it to maintain a balanced state even as elements are added or removed. The structure operates effectively when UUU is not excessively large, typically when UUU is on the order of 2k2^k2k for some integer kkk. Additionally, the Van Emde Boas tree can be extended to support operations like successor and predecessor queries, making it a powerful choice for applications requiring fast access to ordered sets.

Exciton Recombination

Exciton recombination is a fundamental process in semiconductor physics and optoelectronics, where an exciton—a bound state of an electron and a hole—reverts to its ground state. This process occurs when the electron and hole, which are attracted to each other by electrostatic forces, come together and annihilate, emitting energy typically in the form of a photon. The efficiency of exciton recombination is crucial for the performance of devices like LEDs and solar cells, as it directly influences the light emission and energy conversion efficiencies. The rate of recombination can be influenced by various factors, including temperature, material quality, and the presence of defects or impurities. In many materials, this process can be described mathematically using rate equations, illustrating the relationship between exciton density and recombination rates.

Capital Deepening

Capital deepening refers to the process of increasing the amount of capital per worker in an economy, which typically leads to enhanced productivity and economic growth. This phenomenon occurs when firms invest in more advanced tools, machinery, or technology, allowing workers to produce more output in the same amount of time. As a result, capital deepening can lead to higher wages and improved living standards for workers, as they become more efficient.

Key factors influencing capital deepening include:

  • Investment in technology: Adoption of newer technologies that improve productivity.
  • Training and education: Enhancing worker skills to utilize advanced capital effectively.
  • Economies of scale: Larger firms may invest more in capital goods, leading to greater output.

In mathematical terms, if KKK represents capital and LLL represents labor, then the capital-labor ratio can be expressed as KL\frac{K}{L}LK​. An increase in this ratio indicates capital deepening, signifying that each worker has more capital to work with, thereby boosting overall productivity.