StudentsEducators

Hermite Polynomial

Hermite polynomials are a set of orthogonal polynomials that arise in probability, combinatorics, and physics, particularly in the context of quantum mechanics and the solution of differential equations. They are defined by the recurrence relation:

Hn(x)=2xHn−1(x)−2(n−1)Hn−2(x)H_n(x) = 2xH_{n-1}(x) - 2(n-1)H_{n-2}(x)Hn​(x)=2xHn−1​(x)−2(n−1)Hn−2​(x)

with the initial conditions H0(x)=1H_0(x) = 1H0​(x)=1 and H1(x)=2xH_1(x) = 2xH1​(x)=2x. The nnn-th Hermite polynomial can also be expressed in terms of the exponential function and is given by:

Hn(x)=(−1)nex2/2dndxne−x2/2H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}Hn​(x)=(−1)nex2/2dxndn​e−x2/2

These polynomials are orthogonal with respect to the weight function w(x)=e−x2w(x) = e^{-x^2}w(x)=e−x2 on the interval (−∞,∞)(- \infty, \infty)(−∞,∞), meaning that:

∫−∞∞Hm(x)Hn(x)e−x2 dx=0for m≠n\int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2} \, dx = 0 \quad \text{for } m \neq n∫−∞∞​Hm​(x)Hn​(x)e−x2dx=0for m=n

Hermite polynomials play a crucial role in the formulation of the quantum harmonic oscillator and in the study of Gaussian integrals, making them significant in both theoretical and applied

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Gradient Descent

Gradient Descent is an optimization algorithm used to minimize a function by iteratively moving towards the steepest descent direction, which is determined by the negative gradient of the function. In mathematical terms, if we have a function f(x)f(x)f(x), the gradient ∇f(x)\nabla f(x)∇f(x) points in the direction of the steepest increase, so to minimize fff, we update our variable xxx using the formula:

x:=x−α∇f(x)x := x - \alpha \nabla f(x)x:=x−α∇f(x)

where α\alphaα is the learning rate, a hyperparameter that controls how large a step we take on each iteration. The process continues until convergence, which can be defined as when the changes in f(x)f(x)f(x) are smaller than a predefined threshold. Gradient Descent is widely used in machine learning for training models, particularly in algorithms like linear regression and neural networks, making it a fundamental technique in data science. Its effectiveness, however, can depend on the choice of the learning rate and the nature of the function being minimized.

Gluon Color Charge

Gluon color charge is a fundamental property in quantum chromodynamics (QCD), the theory that describes the strong interaction between quarks and gluons, which are the building blocks of protons and neutrons. Unlike electric charge, which has two types (positive and negative), color charge comes in three types, often referred to as red, green, and blue. Gluons, the force carriers of the strong force, themselves carry color charge and can be thought of as mediators of the interactions between quarks, which also possess color charge.

In mathematical terms, the behavior of gluons and their interactions can be described using the group theory of SU(3), which captures the symmetry of color charge. When quarks interact via gluons, they exchange color charges, leading to the concept of color confinement, where only color-neutral combinations (like protons and neutrons) can exist freely in nature. This fascinating mechanism is responsible for the stability of atomic nuclei and the overall structure of matter.

Riesz Representation

The Riesz Representation Theorem is a fundamental result in functional analysis that establishes a deep connection between linear functionals and measures. Specifically, it states that for every continuous linear functional fff on a Hilbert space HHH, there exists a unique vector y∈Hy \in Hy∈H such that for all x∈Hx \in Hx∈H, the functional can be expressed as

f(x)=⟨x,y⟩,f(x) = \langle x, y \rangle,f(x)=⟨x,y⟩,

where ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ denotes the inner product on the space. This theorem highlights that every bounded linear functional can be represented as an inner product with a fixed element of the space, thus linking functional analysis and geometry in Hilbert spaces. The Riesz Representation Theorem not only provides a powerful tool for solving problems in mathematical physics and engineering but also lays the groundwork for further developments in measure theory and probability. Additionally, the uniqueness of the vector yyy ensures that this representation is well-defined, reinforcing the structure and properties of Hilbert spaces.

Markov Chain Steady State

A Markov Chain Steady State refers to a situation in a Markov chain where the probabilities of being in each state stabilize over time. In this state, the system's behavior becomes predictable, as the distribution of states no longer changes with further transitions. Mathematically, if we denote the state probabilities at time ttt as π(t)\pi(t)π(t), the steady state π\piπ satisfies the equation:

π=πP\pi = \pi Pπ=πP

where PPP is the transition matrix of the Markov chain. This equation indicates that the distribution of states in the steady state is invariant to the application of the transition probabilities. In practical terms, reaching the steady state implies that the long-term behavior of the system can be analyzed without concern for its initial state, making it a valuable concept in various fields such as economics, genetics, and queueing theory.

Structural Bioinformatics Modeling

Structural Bioinformatics Modeling is a field that combines bioinformatics and structural biology to analyze and predict the three-dimensional structures of biological macromolecules, such as proteins and nucleic acids. This modeling is crucial for understanding the function of these biomolecules and their interactions within a biological system. Techniques used in this field include homology modeling, which predicts the structure of a molecule based on its similarity to known structures, and molecular dynamics simulations, which explore the behavior of biomolecules over time under various conditions. Additionally, structural bioinformatics often involves the use of computational tools and algorithms to visualize molecular structures and analyze their properties, such as stability and flexibility. This integration of computational and biological sciences facilitates advancements in drug design, disease understanding, and the development of biotechnological applications.

Landau Damping

Landau Damping is a phenomenon in plasma physics and kinetic theory that describes the damping of oscillations in a plasma due to the interaction between particles and waves. It occurs when the velocity distribution of particles in a plasma leads to a net energy transfer from the wave to the particles, resulting in a decay of the wave's amplitude. This effect is particularly significant when the wave frequency is close to the particle's natural oscillation frequency, allowing faster particles to gain energy from the wave while slower particles lose energy.

Mathematically, Landau Damping can be understood through the linearized Vlasov equation, which describes the evolution of the distribution function of particles in phase space. The key condition for Landau Damping is that the wave vector kkk and the frequency ω\omegaω satisfy the dispersion relation, where the imaginary part of the frequency is negative, indicating a damping effect:

ω(k)=ωr(k)−iγ(k)\omega(k) = \omega_r(k) - i\gamma(k)ω(k)=ωr​(k)−iγ(k)

where ωr(k)\omega_r(k)ωr​(k) is the real part (the oscillatory behavior) and γ(k)>0\gamma(k) > 0γ(k)>0 represents the damping term. This phenomenon is crucial for understanding wave propagation in plasmas and has implications for various applications, including fusion research and space physics.