StudentsEducators

Hotelling’S Rule Nonrenewable Resources

Hotelling's Rule is a fundamental principle in the economics of nonrenewable resources. It states that the price of a nonrenewable resource, such as oil or minerals, should increase over time at the rate of interest, assuming that the resource is optimally extracted. This is because as the resource becomes scarcer, its value increases, and thus the owner of the resource should extract it at a rate that balances current and future profits. Mathematically, if P(t)P(t)P(t) is the price of the resource at time ttt, then the rule implies:

dP(t)dt=rP(t)\frac{dP(t)}{dt} = rP(t)dtdP(t)​=rP(t)

where rrr is the interest rate. The implication of Hotelling's Rule is significant for resource management, as it encourages sustainable extraction practices by aligning the economic incentives of resource owners with the long-term availability of the resource. Thus, understanding this principle is crucial for policymakers and businesses involved in the extraction and management of nonrenewable resources.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Riemann Mapping

The Riemann Mapping Theorem is a fundamental result in complex analysis that asserts the existence of a conformal (angle-preserving) mapping between simply connected open subsets of the complex plane. Specifically, if DDD is a simply connected domain in C\mathbb{C}C that is not the entire plane, then there exists a biholomorphic (one-to-one and onto) mapping f:D→Df: D \to \mathbb{D}f:D→D, where D\mathbb{D}D is the open unit disk. This mapping allows us to study properties of complex functions in a more manageable setting, as the unit disk is a well-understood domain. The significance of the theorem lies in its implications for uniformization, enabling mathematicians to classify complicated surfaces and study their properties via simpler geometrical shapes. Importantly, the Riemann Mapping Theorem also highlights the deep relationship between geometry and complex analysis.

Cournot Competition Reaction Function

The Cournot Competition Reaction Function is a fundamental concept in oligopoly theory that describes how firms in a market adjust their output levels in response to the output choices of their competitors. In a Cournot competition model, each firm decides how much to produce based on the expected production levels of other firms, leading to a Nash equilibrium where no firm has an incentive to unilaterally change its production. The reaction function of a firm can be mathematically expressed as:

qi=Ri(q−i)q_i = R_i(q_{-i})qi​=Ri​(q−i​)

where qiq_iqi​ is the quantity produced by firm iii, and q−iq_{-i}q−i​ represents the total output produced by all other firms. The reaction function illustrates the interdependence of firms' decisions; if one firm increases its output, the others must adjust their production strategies to maximize their profits. The intersection of the reaction functions of all firms in the market determines the equilibrium quantities produced by each firm, showcasing the strategic nature of their interactions.

Marginal Propensity To Save

The Marginal Propensity To Save (MPS) is an economic concept that represents the proportion of additional income that a household saves rather than spends on consumption. It can be expressed mathematically as:

MPS=ΔSΔYMPS = \frac{\Delta S}{\Delta Y}MPS=ΔYΔS​

where ΔS\Delta SΔS is the change in savings and ΔY\Delta YΔY is the change in income. For instance, if a household's income increases by $100 and they choose to save $20 of that increase, the MPS would be 0.2 (or 20%). This measure is crucial in understanding consumer behavior and the overall impact of income changes on the economy, as a higher MPS indicates a greater tendency to save, which can influence investment levels and economic growth. In contrast, a lower MPS suggests that consumers are more likely to spend their additional income, potentially stimulating economic activity.

Topological Crystalline Insulators

Topological Crystalline Insulators (TCIs) are a fascinating class of materials that exhibit robust surface states protected by crystalline symmetries rather than solely by time-reversal symmetry, as seen in conventional topological insulators. These materials possess a bulk bandgap that prevents electronic conduction, while their surface states allow for the conduction of electrons, leading to unique electronic properties. The surface states in TCIs can be tuned by manipulating the crystal symmetry, which makes them promising for applications in spintronics and quantum computing.

One of the key features of TCIs is that they can host topologically protected surface states, which are immune to perturbations such as impurities or defects, provided the crystal symmetry is preserved. This can be mathematically described using the concept of topological invariants, such as the Z2 invariant or other symmetry indicators, which classify the topological phase of the material. As research progresses, TCIs are being explored for their potential to develop new electronic devices that leverage their unique properties, merging the fields of condensed matter physics and materials science.

Poincaré Recurrence Theorem

The Poincaré Recurrence Theorem is a fundamental result in dynamical systems and ergodic theory, stating that in a bounded, measure-preserving system, almost every point in the system will eventually return arbitrarily close to its initial position. In simpler terms, if you have a closed system where energy is conserved, after a sufficiently long time, the system will revisit states that are very close to its original state.

This theorem can be formally expressed as follows: if a set AAA in a measure space has a finite measure, then for almost every point x∈Ax \in Ax∈A, there exists a time ttt such that the trajectory of xxx under the dynamics returns to AAA. Thus, the theorem implies that chaotic systems, despite their complex behavior, exhibit a certain level of predictability over a long time scale, reinforcing the idea that "everything comes back" in a closed system.

Superfluidity

Superfluidity is a unique phase of matter characterized by the complete absence of viscosity, allowing it to flow without dissipating energy. This phenomenon occurs at extremely low temperatures, near absolute zero, where certain fluids, such as liquid helium-4, exhibit remarkable properties like the ability to flow through narrow channels without resistance. In a superfluid state, the atoms behave collectively, forming a coherent quantum state that allows them to move in unison, resulting in effects such as the ability to climb the walls of their container.

Key characteristics of superfluidity include:

  • Zero viscosity: Superfluids can flow indefinitely without losing energy.
  • Quantum coherence: The fluid's particles exist in a single quantum state, enabling collective behavior.
  • Flow around obstacles: Superfluids can flow around objects in their path, a phenomenon known as "persistent currents."

This behavior can be described mathematically by considering the wave function of the superfluid, which represents the coherent state of the particles.