StudentsEducators

Hyperbolic Discounting

Hyperbolic Discounting is a behavioral economic theory that describes how people value rewards and outcomes over time. Unlike the traditional exponential discounting model, which assumes that the value of future rewards decreases steadily over time, hyperbolic discounting suggests that individuals tend to prefer smaller, more immediate rewards over larger, delayed ones in a non-linear fashion. This leads to a preference reversal, where people may choose a smaller reward now over a larger reward later, but might later regret this choice as the delayed reward becomes more appealing as the time to receive it decreases.

Mathematically, hyperbolic discounting can be represented by the formula:

V(t)=V01+k⋅tV(t) = \frac{V_0}{1 + k \cdot t}V(t)=1+k⋅tV0​​

where V(t)V(t)V(t) is the present value of a reward at time ttt, V0V_0V0​ is the reward's value, and kkk is a discount rate. This model helps to explain why individuals often struggle with self-control, leading to procrastination and impulsive decision-making.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Keynesian Fiscal Multiplier

The Keynesian Fiscal Multiplier refers to the effect that an increase in government spending has on the overall economic output. According to Keynesian economics, when the government injects money into the economy, either through increased spending or tax cuts, it leads to a chain reaction of increased consumption and investment. This occurs because the initial spending creates income for businesses and individuals, who then spend a portion of that additional income, thereby generating further economic activity.

The multiplier effect can be mathematically represented as:

Multiplier=11−MPC\text{Multiplier} = \frac{1}{1 - MPC}Multiplier=1−MPC1​

where MPCMPCMPC is the marginal propensity to consume, indicating the fraction of additional income that households spend. For instance, if the government spends $100 million and the MPC is 0.8, the total economic impact could be significantly higher than the initial spending, illustrating the power of fiscal policy in stimulating economic growth.

Riemann Zeta Function

The Riemann Zeta Function is a complex function defined for complex numbers sss with a real part greater than 1, given by the series:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

This function has profound implications in number theory, particularly in the distribution of prime numbers. It can be analytically continued to other values of sss (except for s=1s = 1s=1, where it has a simple pole) and is intimately linked to the famous Riemann Hypothesis, which conjectures that all non-trivial zeros of the zeta function lie on the critical line Re(s)=12\text{Re}(s) = \frac{1}{2}Re(s)=21​ in the complex plane. The zeta function also connects various areas of mathematics, including analytic number theory, complex analysis, and mathematical physics, making it one of the most studied functions in mathematics.

Is-Lm Model

The IS-LM model is a fundamental tool in macroeconomics that illustrates the relationship between interest rates and real output in the goods and money markets. The model consists of two curves: the IS curve, which represents the equilibrium in the goods market where investment equals savings, and the LM curve, which represents the equilibrium in the money market where money supply equals money demand.

The intersection of the IS and LM curves determines the equilibrium levels of interest rates and output (GDP). The IS curve is downward sloping, indicating that lower interest rates stimulate higher investment and consumption, leading to increased output. In contrast, the LM curve is upward sloping, reflecting that higher income levels increase the demand for money, which in turn raises interest rates. This model helps economists analyze the effects of fiscal and monetary policies on the economy, making it a crucial framework for understanding macroeconomic fluctuations.

Quantum Pumping

Quantum Pumping refers to the phenomenon where charge carriers, such as electrons, are transported through a quantum system in response to an external time-dependent perturbation, without the need for a direct voltage bias. This process typically involves a cyclic variation of parameters, such as the potential landscape or magnetic field, which induces a net current when averaged over one complete cycle. The key feature of quantum pumping is that it relies on quantum mechanical effects, such as coherence and interference, making it fundamentally different from classical charge transport.

Mathematically, the pumped charge QQQ can be expressed in terms of the parameters being varied; for example, if the perturbation is periodic with period TTT, the average current III can be related to the pumped charge by:

I=QTI = \frac{Q}{T}I=TQ​

This phenomenon has significant implications in areas such as quantum computing and nanoelectronics, where control over charge transport at the quantum level is essential for the development of advanced devices.

Sallen-Key Filter

The Sallen-Key filter is a popular active filter topology used to create low-pass, high-pass, band-pass, and notch filters. It primarily consists of operational amplifiers (op-amps), resistors, and capacitors, allowing for precise control over the filter's characteristics. The configuration is known for its simplicity and effectiveness in achieving second-order filter responses, which exhibit a steeper roll-off compared to first-order filters.

One of the key advantages of the Sallen-Key filter is its ability to provide high gain while maintaining a flat frequency response within the passband. The transfer function of a typical Sallen-Key low-pass filter can be expressed as:

H(s)=K1+sω0+(sω0)2H(s) = \frac{K}{1 + \frac{s}{\omega_0} + \left( \frac{s}{\omega_0} \right)^2}H(s)=1+ω0​s​+(ω0​s​)2K​

where KKK is the gain and ω0\omega_0ω0​ is the cutoff frequency. Its versatility makes it a common choice in audio processing, signal conditioning, and other electronic applications where filtering is required.

Crispr Off-Target Effect

The CRISPR off-target effect refers to the unintended modifications in the genome that occur when the CRISPR/Cas9 system binds to sequences other than the intended target. While CRISPR is designed to create precise cuts at specific locations in DNA, its guide RNA can sometimes match similar sequences elsewhere in the genome, leading to unintended edits. These off-target modifications can have significant implications, potentially disrupting essential genes or regulatory regions, which can result in unwanted phenotypic changes. Researchers employ various methods, such as optimizing guide RNA design and using engineered Cas9 variants, to minimize these off-target effects. Understanding and mitigating off-target effects is crucial for ensuring the safety and efficacy of CRISPR-based therapies in clinical applications.