StudentsEducators

Jordan Form

The Jordan Form, also known as the Jordan canonical form, is a representation of a linear operator or matrix that simplifies many problems in linear algebra. Specifically, it transforms a matrix into a block diagonal form, where each block, called a Jordan block, corresponds to an eigenvalue of the matrix. A Jordan block for an eigenvalue λ\lambdaλ with size nnn is defined as:

Jn(λ)=(λ10⋯00λ1⋯000λ⋯0⋮⋮⋮⋱1000⋯λ)J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}Jn​(λ)=​λ00⋮0​1λ0⋮0​01λ⋮0​⋯⋯⋯⋱⋯​0001λ​​

This form is particularly useful as it provides insight into the structure of the linear operator, such as its eigenvalues, algebraic multiplicities, and geometric multiplicities. The Jordan Form is unique up to the order of the Jordan blocks, making it an essential tool for understanding the behavior of matrices under various operations, such as exponentiation and diagonalization.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Stark Effect

The Stark Effect refers to the phenomenon where the energy levels of atoms or molecules are shifted and split in the presence of an external electric field. This effect is a result of the interaction between the electric field and the dipole moments of the atoms or molecules, leading to a change in their quantum states. The Stark Effect can be classified into two main types: the normal Stark effect, which occurs in systems with non-degenerate energy levels, and the anomalous Stark effect, which occurs in systems with degenerate energy levels.

Mathematically, the energy shift ΔE\Delta EΔE can be expressed as:

ΔE=−d⃗⋅E⃗\Delta E = -\vec{d} \cdot \vec{E}ΔE=−d⋅E

where d⃗\vec{d}d is the dipole moment vector and E⃗\vec{E}E is the electric field vector. This phenomenon has significant implications in various fields such as spectroscopy, quantum mechanics, and atomic physics, as it allows for the precise measurement of electric fields and the study of atomic structure.

Coase Theorem Externalities

The Coase Theorem posits that when property rights are clearly defined and transaction costs are negligible, parties will negotiate to resolve externalities efficiently regardless of who holds the rights. An externality occurs when a third party is affected by the economic activities of others, such as pollution from a factory impacting local residents. The theorem suggests that if individuals can bargain without cost, they will arrive at an optimal allocation of resources, which maximizes total welfare. For instance, if a factory pollutes a river, the affected residents and the factory can negotiate a solution, such as the factory paying residents to reduce its pollution. However, the real-world application often encounters challenges like high transaction costs or difficulties in defining and enforcing property rights, which can lead to market failures.

Tobin’S Q

Tobin's Q is a ratio that compares the market value of a firm to the replacement cost of its assets. Specifically, it is defined as:

Q=Market Value of FirmReplacement Cost of AssetsQ = \frac{\text{Market Value of Firm}}{\text{Replacement Cost of Assets}}Q=Replacement Cost of AssetsMarket Value of Firm​

When Q>1Q > 1Q>1, it suggests that the market values the firm higher than the cost to replace its assets, indicating potential opportunities for investment and expansion. Conversely, when Q<1Q < 1Q<1, it implies that the market values the firm lower than the cost of its assets, which can discourage new investment. This concept is crucial in understanding investment decisions, as companies are more likely to invest in new projects when Tobin's Q is favorable. Additionally, it serves as a useful tool for investors to gauge whether a firm's stock is overvalued or undervalued relative to its physical assets.

Floyd-Warshall

The Floyd-Warshall algorithm is a dynamic programming technique used to find the shortest paths between all pairs of vertices in a weighted graph. It works on both directed and undirected graphs and can handle graphs with negative weights, but it does not work with graphs that contain negative cycles. The algorithm iteratively updates a distance matrix DDD, where D[i][j]D[i][j]D[i][j] represents the shortest distance from vertex iii to vertex jjj. The core of the algorithm is encapsulated in the following formula:

D[i][j]=min⁡(D[i][j],D[i][k]+D[k][j])D[i][j] = \min(D[i][j], D[i][k] + D[k][j])D[i][j]=min(D[i][j],D[i][k]+D[k][j])

for all vertices kkk. This process is repeated for each vertex kkk as an intermediate point, ultimately ensuring that the shortest paths between all pairs of vertices are found. The time complexity of the Floyd-Warshall algorithm is O(V3)O(V^3)O(V3), where VVV is the number of vertices in the graph, making it less efficient for very large graphs compared to other shortest-path algorithms.

Z-Transform

The Z-Transform is a powerful mathematical tool used primarily in the fields of signal processing and control theory to analyze discrete-time signals and systems. It transforms a discrete-time signal, represented as a sequence x[n]x[n]x[n], into a complex frequency domain representation X(z)X(z)X(z), defined as:

X(z)=∑n=−∞∞x[n]z−nX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}X(z)=n=−∞∑∞​x[n]z−n

where zzz is a complex variable. This transformation allows for the analysis of system stability, frequency response, and other characteristics by examining the poles and zeros of X(z)X(z)X(z). The Z-Transform is particularly useful for solving linear difference equations and designing digital filters. Key properties include linearity, time-shifting, and convolution, which facilitate operations on signals in the Z-domain.

Cobweb Model

The Cobweb Model is an economic theory that illustrates how supply and demand can lead to cyclical fluctuations in prices and quantities in certain markets, particularly in agricultural goods. It is based on the premise that producers make decisions based on past prices rather than current ones, resulting in a lagged response to changes in demand. When prices rise, producers increase supply, but due to the time needed for production, the supply may not meet the demand immediately, causing prices to fluctuate. This can create a cobweb-like pattern in a graph where the price and quantity oscillate over time, often converging towards equilibrium or diverging indefinitely. Key components of this model include:

  • Lagged Supply Response: Suppliers react to previous price levels.
  • Price Fluctuations: Prices may rise and fall in cycles.
  • Equilibrium Dynamics: The model can show convergence or divergence to a stable price.

Understanding the Cobweb Model helps in analyzing market dynamics, especially in industries where production takes time and is influenced by past price signals.