StudentsEducators

Lstm Gates

LSTM (Long Short-Term Memory) networks are a special type of recurrent neural network (RNN) designed to learn long-term dependencies in sequential data. LSTM gates are crucial components that control the flow of information within the network. There are three primary gates in an LSTM cell:

  1. The Forget Gate: This gate determines which information from the cell state should be discarded. It uses a sigmoid activation function to output values between 0 and 1, where 0 means "completely forget" and 1 means "completely retain." Mathematically, it can be expressed as:
ft=σ(Wf⋅[ht−1,xt]+bf) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)ft​=σ(Wf​⋅[ht−1​,xt​]+bf​)
  1. The Input Gate: This gate decides which new information should be added to the cell state. It also uses a sigmoid function to control the input and a tanh function to create a vector of new candidate values. Its formulation is:
it=σ(Wi⋅[ht−1,xt]+bi) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)it​=σ(Wi​⋅[ht−1​,xt​]+bi​) C~t=tanh⁡(WC⋅[ht−1,xt]+bC) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)C~t​=tanh(WC​⋅[ht−1​,xt​]+bC​)
  1. The Output Gate: This gate determines what the next hidden state should be (i

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Kaldor’S Facts

Kaldor’s Facts, benannt nach dem britischen Ökonomen Nicholas Kaldor, sind eine Reihe von empirischen Beobachtungen, die sich auf das langfristige Wirtschaftswachstum und die Produktivität beziehen. Diese Fakten beinhalten insbesondere zwei zentrale Punkte: Erstens, das Wachstumsraten des Produktionssektors tendieren dazu, im Laufe der Zeit stabil zu bleiben, unabhängig von den wirtschaftlichen Zyklen. Zweitens, dass die Kapitalproduktivität in der Regel konstant bleibt, was bedeutet, dass der Output pro Einheit Kapital über lange Zeiträume hinweg relativ stabil ist.

Diese Beobachtungen legen nahe, dass technologische Fortschritte und Investitionen in Kapitalgüter entscheidend für das Wachstum sind. Kaldor argumentierte, dass diese Stabilitäten für die Entwicklung von ökonomischen Modellen und die Analyse von Wirtschaftspolitiken von großer Bedeutung sind. Insgesamt bieten Kaldor's Facts wertvolle Einsichten in das Verständnis der Beziehung zwischen Kapital, Arbeit und Wachstum in einer Volkswirtschaft.

Nonlinear Optical Effects

Nonlinear optical effects occur when the response of a material to an electromagnetic field (like light) is not directly proportional to the intensity of that field. This means that at high light intensities, the material exhibits behaviors that cannot be described by linear optics. Common examples of nonlinear optical effects include second-harmonic generation, self-focusing, and Kerr effects. In these processes, the polarization PPP of the material can be expressed as a Taylor series expansion, where the first term is linear and the subsequent terms represent nonlinear contributions:

P=ϵ0(χ(1)E+χ(2)E2+χ(3)E3+…)P = \epsilon_0 \left( \chi^{(1)} E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \ldots \right)P=ϵ0​(χ(1)E+χ(2)E2+χ(3)E3+…)

Here, χ(n)\chi^{(n)}χ(n) are the susceptibility coefficients of the material for different orders of nonlinearity. These effects are crucial for applications in frequency conversion, optical switching, and laser technology, enabling the development of advanced photonic devices.

Bode Gain Margin

The Bode Gain Margin is a critical parameter in control theory that measures the stability of a feedback control system. It represents the amount of gain increase that can be tolerated before the system becomes unstable. Specifically, it is defined as the difference in decibels (dB) between the gain at the phase crossover frequency (where the phase shift is -180 degrees) and a gain of 1 (0 dB). If the gain margin is positive, the system is stable; if it is negative, the system is unstable.

To express this mathematically, if G(jω)G(j\omega)G(jω) is the open-loop transfer function evaluated at the frequency ω\omegaω where the phase is -180 degrees, the gain margin GMGMGM can be calculated as:

GM=20log⁡10(1∣G(jω)∣)GM = 20 \log_{10} \left( \frac{1}{|G(j\omega)|} \right)GM=20log10​(∣G(jω)∣1​)

where ∣G(jω)∣|G(j\omega)|∣G(jω)∣ is the magnitude of the transfer function at the phase crossover frequency. A higher gain margin indicates a more robust system, providing a greater buffer against variations in system parameters or external disturbances.

Keynesian Beauty Contest

The Keynesian Beauty Contest is an economic concept introduced by the British economist John Maynard Keynes to illustrate how expectations influence market behavior. In this analogy, participants in a beauty contest must choose the most attractive contestants, not based on their personal preferences, but rather on what they believe others will consider attractive. This leads to a situation where individuals focus on predicting the choices of others, rather than their own beliefs about beauty.

In financial markets, this behavior manifests as investors making decisions based on their expectations of how others will react, rather than on fundamental values. As a result, asset prices can become disconnected from their intrinsic values, leading to volatility and bubbles. The contest highlights the importance of collective psychology in economics, emphasizing that market dynamics are heavily influenced by perceptions and expectations.

Gresham’S Law

Gresham’s Law is an economic principle that states that "bad money drives out good money." This phenomenon occurs when there are two forms of currency in circulation, one of higher intrinsic value (good money) and one of lower intrinsic value (bad money). In such a scenario, people tend to hoard the good money, keeping it out of circulation, while spending the bad money, which is perceived as less valuable. This behavior can lead to a situation where the good money effectively disappears from the marketplace, causing the economy to function predominantly on the inferior currency.

For example, if a nation has coins made of precious metals (good money) and new coins made of a less valuable material (bad money), people will prefer to keep the valuable coins for themselves and use the newer, less valuable coins for transactions. Ultimately, this can distort the economy and lead to inflationary pressures as the quality of money in circulation diminishes.

Quantum Capacitance

Quantum capacitance is a concept that arises in the context of quantum mechanics and solid-state physics, particularly when analyzing the electrical properties of nanoscale materials and devices. It is defined as the ability of a quantum system to store charge, and it differs from classical capacitance by taking into account the quantization of energy levels in small systems. In essence, quantum capacitance reflects how the density of states at the Fermi level influences the ability of a material to accommodate additional charge carriers.

Mathematically, it can be expressed as:

Cq=e2dndμC_q = e^2 \frac{d n}{d \mu}Cq​=e2dμdn​

where CqC_qCq​ is the quantum capacitance, eee is the electron charge, nnn is the charge carrier density, and μ\muμ is the chemical potential. This concept is particularly important in the study of two-dimensional materials, such as graphene, where the quantum capacitance can significantly affect the overall capacitance of devices like field-effect transistors (FETs). Understanding quantum capacitance is essential for optimizing the performance of next-generation electronic components.