StudentsEducators

Manacher’S Algorithm Palindrome

Manacher's Algorithm is an efficient method used to find the longest palindromic substring in a given string in linear time, specifically O(n)O(n)O(n). This algorithm cleverly avoids redundant checks by maintaining an array that records the radius of palindromes centered at each position. It utilizes the concept of symmetry in palindromes, allowing it to expand potential palindromic centers only when necessary.

The key steps involved in the algorithm include:

  1. Transforming the input string to handle even-length palindromes by inserting a special character (e.g., #) between each character and at the ends.
  2. Maintaining a center and right boundary of the currently known longest palindrome to optimize the search for new palindromes.
  3. Expanding around potential centers to determine the maximum length of palindromes as it iterates through the transformed string.

By the end of the algorithm, the longest palindromic substring can be easily identified from the original string, making it a powerful tool for string analysis.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Chebyshev Filter

A Chebyshev filter is a type of electronic filter that is characterized by its ability to achieve a steeper roll-off than Butterworth filters while allowing for some ripple in the passband. The design of this filter is based on Chebyshev polynomials, which enable the filter to have a more aggressive frequency response. There are two main types of Chebyshev filters: Type I, which has ripple only in the passband, and Type II, which has ripple only in the stopband.

The transfer function of a Chebyshev filter can be defined using the following equation:

H(s)=11+ϵ2Tn2(sωc)H(s) = \frac{1}{\sqrt{1 + \epsilon^2 T_n^2\left(\frac{s}{\omega_c}\right)}}H(s)=1+ϵ2Tn2​(ωc​s​)​1​

where TnT_nTn​ is the Chebyshev polynomial of order nnn, ϵ\epsilonϵ is the ripple factor, and ωc\omega_cωc​ is the cutoff frequency. This filter is widely used in signal processing applications due to its efficient performance in filtering signals while maintaining a relatively low level of distortion.

Hausdorff Dimension In Fractals

The Hausdorff dimension is a concept used to describe the dimensionality of fractals, which are complex geometric shapes that exhibit self-similarity at different scales. Unlike traditional dimensions (such as 1D, 2D, or 3D), the Hausdorff dimension can take non-integer values, reflecting the intricate structure of fractals. For example, the dimension of a line is 1, a plane is 2, and a solid is 3, but a fractal like the Koch snowflake has a Hausdorff dimension of approximately 1.26191.26191.2619.

To calculate the Hausdorff dimension, one typically uses a method involving covering the fractal with a series of small balls (or sets) and examining how the number of these balls scales with their size. This leads to the formula:

dim⁡H(F)=lim⁡ϵ→0log⁡(N(ϵ))log⁡(1/ϵ)\dim_H(F) = \lim_{\epsilon \to 0} \frac{\log(N(\epsilon))}{\log(1/\epsilon)}dimH​(F)=ϵ→0lim​log(1/ϵ)log(N(ϵ))​

where N(ϵ)N(\epsilon)N(ϵ) is the minimum number of balls of radius ϵ\epsilonϵ needed to cover the fractal FFF. This property makes the Hausdorff dimension a powerful tool in understanding the complexity and structure of fractals, allowing researchers to quantify their geometrical properties in ways that go beyond traditional Euclidean dimensions.

Hamming Bound

The Hamming Bound is a fundamental concept in coding theory that establishes a limit on the number of codewords in a block code, given its parameters. It states that for a code of length nnn that can correct up to ttt errors, the total number of distinct codewords must satisfy the inequality:

M⋅∑i=0t(ni)≤2nM \cdot \sum_{i=0}^{t} \binom{n}{i} \leq 2^nM⋅i=0∑t​(in​)≤2n

where MMM is the number of codewords in the code, and (ni)\binom{n}{i}(in​) is the binomial coefficient representing the number of ways to choose iii positions from nnn. This bound ensures that the spheres of influence (or spheres of radius ttt) for each codeword do not overlap, maintaining unique decodability. If a code meets this bound, it is said to achieve the Hamming Bound, indicating that it is optimal in terms of error correction capability for the given parameters.

Carnot Cycle

The Carnot Cycle is a theoretical thermodynamic cycle that serves as a standard for the efficiency of heat engines. It consists of four reversible processes: two isothermal (constant temperature) processes and two adiabatic (no heat exchange) processes. In the first isothermal expansion phase, the working substance absorbs heat QHQ_HQH​ from a high-temperature reservoir, doing work on the surroundings. During the subsequent adiabatic expansion, the substance expands without heat transfer, leading to a drop in temperature.

Next, in the second isothermal process, the working substance releases heat QCQ_CQC​ to a low-temperature reservoir while undergoing isothermal compression. Finally, the cycle completes with an adiabatic compression, where the temperature rises without heat exchange, returning to the initial state. The efficiency η\etaη of a Carnot engine is given by the formula:

η=1−TCTH\eta = 1 - \frac{T_C}{T_H}η=1−TH​TC​​

where TCT_CTC​ is the absolute temperature of the cold reservoir and THT_HTH​ is the absolute temperature of the hot reservoir. This cycle highlights the fundamental limits of efficiency for all real heat engines.

Thermal Barrier Coatings

Thermal Barrier Coatings (TBCs) are advanced materials engineered to protect components from extreme temperatures and thermal fatigue, particularly in high-performance applications like gas turbines and aerospace engines. These coatings are typically composed of a ceramic material, such as zirconia, which exhibits low thermal conductivity, thereby insulating the underlying metal substrate from heat. The effectiveness of TBCs can be quantified by their thermal conductivity, often expressed in units of W/m·K, which should be significantly lower than that of the base material.

TBCs not only enhance the durability and performance of components by minimizing thermal stress but also contribute to improved fuel efficiency and reduced emissions in engines. The application process usually involves techniques like plasma spraying or electron beam physical vapor deposition (EB-PVD), which create a porous structure that can withstand thermal cycling and mechanical stresses. Overall, TBCs are crucial for extending the operational life of high-temperature components in various industries.

Functional Brain Networks

Functional brain networks refer to the interconnected regions of the brain that work together to perform specific cognitive functions. These networks are identified through techniques like functional magnetic resonance imaging (fMRI), which measures brain activity by detecting changes associated with blood flow. The brain operates as a complex system of nodes (brain regions) and edges (connections between regions), and various networks can be categorized based on their roles, such as the default mode network, which is active during rest and mind-wandering, or the executive control network, which is involved in higher-order cognitive processes. Understanding these networks is crucial for unraveling the neural basis of behaviors and disorders, as disruptions in functional connectivity can lead to various neurological and psychiatric conditions. Overall, functional brain networks provide a framework for studying how different parts of the brain collaborate to support our thoughts, emotions, and actions.