StudentsEducators

Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used to model decision-making in situations where outcomes are partly random and partly under the control of a decision maker. An MDP is defined by a tuple (S,A,P,R,γ)(S, A, P, R, \gamma)(S,A,P,R,γ), where:

  • SSS is a set of states.
  • AAA is a set of actions available to the agent.
  • PPP is the state transition probability, denoted as P(s′∣s,a)P(s'|s,a)P(s′∣s,a), which represents the probability of moving to state s′s's′ from state sss after taking action aaa.
  • RRR is the reward function, R(s,a)R(s,a)R(s,a), which assigns a numerical reward for taking action aaa in state sss.
  • γ\gammaγ (gamma) is the discount factor, a value between 0 and 1 that represents the importance of future rewards compared to immediate rewards.

The goal in an MDP is to find a policy π\piπ, which is a strategy that specifies the action to take in each state, maximizing the expected cumulative reward over time. MDPs are foundational in fields such as reinforcement learning and operations research, providing a systematic way to evaluate and optimize decision processes under uncertainty.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Z-Transform

The Z-Transform is a powerful mathematical tool used primarily in the fields of signal processing and control theory to analyze discrete-time signals and systems. It transforms a discrete-time signal, represented as a sequence x[n]x[n]x[n], into a complex frequency domain representation X(z)X(z)X(z), defined as:

X(z)=∑n=−∞∞x[n]z−nX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}X(z)=n=−∞∑∞​x[n]z−n

where zzz is a complex variable. This transformation allows for the analysis of system stability, frequency response, and other characteristics by examining the poles and zeros of X(z)X(z)X(z). The Z-Transform is particularly useful for solving linear difference equations and designing digital filters. Key properties include linearity, time-shifting, and convolution, which facilitate operations on signals in the Z-domain.

Neural Odes

Neural Ordinary Differential Equations (Neural ODEs) represent a groundbreaking approach that integrates neural networks with differential equations. In this framework, a neural network is used to define the dynamics of a system, where the hidden state evolves continuously over time, rather than in discrete steps. This is captured mathematically by the equation:

dz(t)dt=f(z(t),t,θ)\frac{dz(t)}{dt} = f(z(t), t, \theta)dtdz(t)​=f(z(t),t,θ)

Hierbei ist z(t)z(t)z(t) der Zustand des Systems zur Zeit ttt, fff ist die neural network-basierte Funktion, die die Dynamik beschreibt, und θ\thetaθ sind die Parameter des Netzwerks. Neural ODEs ermöglichen es, komplexe dynamische Systeme effizient zu modellieren und bieten Vorteile wie Speichereffizienz und die Fähigkeit, zeitabhängige Prozesse flexibel zu lernen. Diese Methode hat Anwendungen in verschiedenen Bereichen, darunter Physik, Biologie und Finanzmodelle, wo die Dynamik oft durch Differentialgleichungen beschrieben wird.

Lucas Critique

The Lucas Critique, introduced by economist Robert Lucas in the 1970s, argues that traditional macroeconomic models fail to account for changes in people's expectations in response to policy shifts. Specifically, it states that when policymakers implement new economic policies, they often do so based on historical data that does not properly incorporate how individuals and firms will adjust their behavior in reaction to those policies. This leads to a fundamental flaw in policy evaluation, as the effects predicted by such models can be misleading.

In essence, the critique emphasizes the importance of rational expectations, which posits that agents use all available information to make decisions, thus altering the expected outcomes of economic policies. Consequently, any macroeconomic model used for policy analysis must take into account how expectations will change as a result of the policy itself, or it risks yielding inaccurate predictions.

To summarize, the Lucas Critique highlights the need for dynamic models that incorporate expectations, ultimately reshaping the approach to economic policy design and analysis.

Planck’S Law

Planck's Law describes the electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature. It establishes that the intensity of radiation emitted at a specific wavelength is determined by the temperature of the body, following the formula:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

where:

  • I(λ,T)I(\lambda, T)I(λ,T) is the spectral radiance,
  • hhh is Planck's constant,
  • ccc is the speed of light,
  • λ\lambdaλ is the wavelength,
  • kkk is the Boltzmann constant,
  • TTT is the absolute temperature in Kelvin.

This law is pivotal in quantum mechanics as it introduced the concept of quantized energy levels, leading to the development of quantum theory. Additionally, it explains phenomena such as why hotter objects emit more radiation at shorter wavelengths, contributing to our understanding of thermal radiation and the distribution of energy across different wavelengths.

Fermat Theorem

Fermat's Last Theorem states that there are no three positive integers aaa, bbb, and ccc that can satisfy the equation an+bn=cna^n + b^n = c^nan+bn=cn for any integer value of nnn greater than 2. This theorem was proposed by Pierre de Fermat in 1637, famously claiming that he had a proof that was too large to fit in the margin of his book. The theorem remained unproven for over 350 years, becoming one of the most famous unsolved problems in mathematics. It was finally proven by Andrew Wiles in 1994, using techniques from algebraic geometry and number theory, specifically the modularity theorem. The proof is notable not only for its complexity but also for the deep connections it established between various fields of mathematics.

Thin Film Stress Measurement

Thin film stress measurement is a crucial technique used in materials science and engineering to assess the mechanical properties of thin films, which are layers of material only a few micrometers thick. These stresses can arise from various sources, including thermal expansion mismatch, deposition techniques, and inherent material properties. Accurate measurement of these stresses is essential for ensuring the reliability and performance of thin film applications, such as semiconductors and coatings.

Common methods for measuring thin film stress include substrate bending, laser scanning, and X-ray diffraction. Each method relies on different principles and offers unique advantages depending on the specific application. For instance, in substrate bending, the curvature of the substrate is measured to calculate the stress using the Stoney equation:

σ=Es6(1−νs)⋅hs2hf⋅d2dx2(1R)\sigma = \frac{E_s}{6(1 - \nu_s)} \cdot \frac{h_s^2}{h_f} \cdot \frac{d^2}{dx^2} \left( \frac{1}{R} \right)σ=6(1−νs​)Es​​⋅hf​hs2​​⋅dx2d2​(R1​)

where σ\sigmaσ is the stress in the thin film, EsE_sEs​ is the modulus of elasticity of the substrate, νs\nu_sνs​ is the Poisson's ratio, hsh_shs​ and hfh_fhf​ are the thicknesses of the substrate and film, respectively, and RRR is the radius of curvature. This equation illustrates the relationship between film stress and