StudentsEducators

Meta-Learning Few-Shot

Meta-Learning Few-Shot is an approach in machine learning designed to enable models to learn new tasks with very few training examples. The core idea is to leverage prior knowledge gained from a variety of tasks to improve learning efficiency on new, related tasks. In this context, few-shot learning refers to the ability of a model to generalize from only a handful of examples, typically ranging from one to five samples per class.

Meta-learning algorithms typically consist of two main phases: meta-training and meta-testing. During the meta-training phase, the model is trained on a variety of tasks to learn a good initialization or to develop strategies for rapid adaptation. In the meta-testing phase, the model encounters new tasks and is expected to quickly adapt using the knowledge it has acquired, often employing techniques like gradient-based optimization. This method is particularly useful in real-world applications where data is scarce or expensive to obtain.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Cortical Oscillation Dynamics

Cortical Oscillation Dynamics refers to the rhythmic fluctuations in electrical activity observed in the brain's cortical regions. These oscillations are crucial for various cognitive processes, including attention, memory, and perception. They can be categorized into different frequency bands, such as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30 Hz and above), each associated with distinct mental states and functions. The interactions between these oscillations can be described mathematically through differential equations that model their phase relationships and amplitude dynamics. An understanding of these dynamics is essential for insights into neurological conditions and the development of therapeutic approaches, as disruptions in normal oscillatory patterns are often linked to disorders such as epilepsy and schizophrenia.

Quantum Eraser Experiments

Quantum Eraser Experiments are fascinating demonstrations in quantum mechanics that explore the nature of wave-particle duality and the role of measurement in determining a system's state. In these experiments, particles such as photons are sent through a double-slit apparatus, where they can exhibit either wave-like or particle-like behavior depending on whether their path information is known. When the path information is erased after the particles have been detected, the interference pattern that is characteristic of wave behavior can re-emerge, suggesting that the act of observation influences the outcome.

Key points about Quantum Eraser Experiments include:

  • Wave-Particle Duality: Particles behave like waves when not observed, but act like particles when measured.
  • Role of Measurement: The experiments highlight that the act of measurement affects the system, leading to different outcomes.
  • Information Erasure: By erasing path information, the experiment shows that the potential for interference can be restored.

These experiments challenge our classical intuitions about reality and demonstrate the counterintuitive implications of quantum mechanics.

Minsky Moment

A Minsky Moment refers to a sudden and dramatic collapse of asset prices following a prolonged period of speculation and increasing debt levels, named after the economist Hyman Minsky. According to Minsky's financial instability hypothesis, economies go through cycles of boom and bust driven by investors' changing risk appetites. During the boom phase, optimism leads to increased borrowing and speculative investments, creating an illusion of stability. However, as debts accumulate and asset prices become overvalued, even a minor negative event can trigger a panic, leading to a rapid decline in asset prices and a financial crisis. This phenomenon highlights the inherent instability of financial markets and the tendency for economic systems to oscillate between periods of euphoria and despair.

Prim’S Mst

Prim's Minimum Spanning Tree (MST) algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. A minimum spanning tree is a subset of the edges that connects all vertices with the minimum possible total edge weight, without forming any cycles. The algorithm starts with a single vertex and gradually expands the tree by adding the smallest edge that connects a vertex in the tree to a vertex outside of it. This process continues until all vertices are included in the tree.

The algorithm can be summarized in the following steps:

  1. Initialize: Start with a vertex and mark it as part of the tree.
  2. Select Edge: Choose the smallest edge that connects the tree to a vertex outside.
  3. Add Vertex: Add the selected edge and the new vertex to the tree.
  4. Repeat: Continue the process until all vertices are included.

Prim's algorithm is efficient, typically running in O(Elog⁡V)O(E \log V)O(ElogV) time when implemented with a priority queue, making it suitable for dense graphs.

Kalina Cycle

The Kalina Cycle is an innovative thermodynamic cycle used for converting thermal energy into mechanical energy, particularly in power generation applications. It utilizes a mixture of water and ammonia as the working fluid, which allows for a greater efficiency in energy conversion compared to traditional steam cycles. The key advantage of the Kalina Cycle lies in its ability to exploit varying boiling points of the two components in the working fluid, enabling a more effective use of heat sources with different temperatures.

The cycle operates through a series of processes that involve heating, vaporization, expansion, and condensation, ultimately leading to an increased efficiency defined by the Carnot efficiency. Moreover, the Kalina Cycle is particularly suited for low to medium temperature heat sources, making it ideal for geothermal, waste heat recovery, and even solar thermal applications. Its flexibility and higher efficiency make the Kalina Cycle a promising alternative in the pursuit of sustainable energy solutions.

Cost-Push Inflation

Cost-push inflation occurs when the overall price levels rise due to increases in the cost of production. This can happen when there are supply shocks, such as a sudden rise in the prices of raw materials, labor, or energy. As production costs increase, businesses may pass these costs onto consumers in the form of higher prices, leading to inflation.

Key factors that contribute to cost-push inflation include:

  • Rising wages: When workers demand higher wages, businesses may raise prices to maintain profit margins.
  • Supply chain disruptions: Events like natural disasters or geopolitical tensions can hinder the supply of goods, increasing their prices.
  • Increased taxation: Higher taxes on production can lead to increased costs for businesses, which may then be transferred to consumers.

Ultimately, cost-push inflation can lead to a stagnation in economic growth as consumers reduce their spending due to higher prices, creating a challenging economic environment.