StudentsEducators

Multijunction Solar Cell Physics

Multijunction solar cells are advanced photovoltaic devices that consist of multiple semiconductor layers, each designed to absorb a different part of the solar spectrum. This multilayer structure enables higher efficiency compared to traditional single-junction solar cells, which typically absorb a limited range of wavelengths. The key principle behind multijunction cells is the bandgap engineering, where each layer is optimized to capture specific energy levels of incoming photons.

For instance, a typical multijunction cell might incorporate three layers with different bandgaps, allowing it to convert sunlight into electricity more effectively. The efficiency of these cells can be described by the formula:

η=∑i=1nηi\eta = \sum_{i=1}^{n} \eta_iη=i=1∑n​ηi​

where η\etaη is the overall efficiency and ηi\eta_iηi​ is the efficiency of each individual junction. By utilizing this approach, multijunction solar cells can achieve efficiencies exceeding 40%, making them a promising technology for both space applications and terrestrial energy generation.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Normal Subgroup Lattice

The Normal Subgroup Lattice is a graphical representation of the relationships between normal subgroups of a group GGG. In this lattice, each node represents a normal subgroup, and edges indicate inclusion relationships. A subgroup NNN of GGG is called normal if it satisfies the condition gNg−1=NgNg^{-1} = NgNg−1=N for all g∈Gg \in Gg∈G. The structure of the lattice reveals important properties of the group, such as its composition series and how it can be decomposed into simpler components via quotient groups. The lattice is especially useful in group theory, as it helps visualize the connections between different normal subgroups and their corresponding factor groups.

Lemons Problem

The Lemons Problem, introduced by economist George Akerlof in his 1970 paper "The Market for Lemons: Quality Uncertainty and the Market Mechanism," illustrates how information asymmetry can lead to market failure. In this context, "lemons" refer to low-quality goods, such as used cars, while "peaches" signify high-quality items. Buyers cannot accurately assess the quality of the goods before purchase, which results in a situation where they are only willing to pay an average price that reflects the expected quality. As a consequence, sellers of high-quality goods withdraw from the market, leading to a predominance of inferior products. This phenomenon demonstrates how lack of information can undermine trust in markets and create inefficiencies, ultimately harming both consumers and producers.

Banach Fixed-Point Theorem

The Banach Fixed-Point Theorem, also known as the contraction mapping theorem, is a fundamental result in the field of metric spaces. It asserts that if you have a complete metric space and a function TTT defined on that space, which satisfies the contraction condition:

d(T(x),T(y))≤k⋅d(x,y)d(T(x), T(y)) \leq k \cdot d(x, y)d(T(x),T(y))≤k⋅d(x,y)

for all x,yx, yx,y in the space, where 0≤k<10 \leq k < 10≤k<1 is a constant, then TTT has a unique fixed point. This means there exists a point x∗x^*x∗ such that T(x∗)=x∗T(x^*) = x^*T(x∗)=x∗. Furthermore, the theorem guarantees that starting from any point in the space and repeatedly applying the function TTT will converge to this fixed point x∗x^*x∗. The Banach Fixed-Point Theorem is widely used in various fields, including analysis, differential equations, and numerical methods, due to its powerful implications regarding the existence and uniqueness of solutions.

Macroprudential Policy

Macroprudential policy refers to a framework of financial regulation aimed at mitigating systemic risks and enhancing the stability of the financial system as a whole. Unlike traditional microprudential policies, which focus on the safety and soundness of individual financial institutions, macroprudential policies address the interconnectedness and collective behaviors of financial entities that can lead to systemic crises. Key tools of macroprudential policy include capital buffers, countercyclical capital requirements, and loan-to-value ratios, which are designed to limit excessive risk-taking during economic booms and provide a buffer during downturns. By monitoring and controlling credit growth and asset bubbles, macroprudential policy seeks to prevent the buildup of vulnerabilities that could lead to financial instability. Ultimately, the goal is to ensure a resilient financial system that can withstand shocks and support sustainable economic growth.

Beveridge Curve

The Beveridge Curve is a graphical representation that illustrates the relationship between unemployment and job vacancies in an economy. It typically shows an inverse relationship: when unemployment is high, job vacancies tend to be low, and vice versa. This curve reflects the efficiency of the labor market in matching workers to available jobs.

In essence, the Beveridge Curve can be understood through the following points:

  • High Unemployment, Low Vacancies: When the economy is in a recession, many people are unemployed, and companies are hesitant to hire, leading to fewer job openings.
  • Low Unemployment, High Vacancies: Conversely, in a booming economy, companies are eager to hire, resulting in more job vacancies while unemployment rates decrease.

The position and shape of the curve can shift due to various factors, such as changes in labor market policies, economic conditions, or shifts in worker skills. This makes the Beveridge Curve a valuable tool for economists to analyze labor market dynamics and policy effects.

Laplacian Matrix

The Laplacian matrix is a fundamental concept in graph theory, representing the structure of a graph in a matrix form. It is defined for a given graph GGG with nnn vertices as L=D−AL = D - AL=D−A, where DDD is the degree matrix (a diagonal matrix where each diagonal entry DiiD_{ii}Dii​ corresponds to the degree of vertex iii) and AAA is the adjacency matrix (where Aij=1A_{ij} = 1Aij​=1 if there is an edge between vertices iii and jjj, and 000 otherwise). The Laplacian matrix has several important properties: it is symmetric and positive semi-definite, and its smallest eigenvalue is always zero, corresponding to the connected components of the graph. Additionally, the eigenvalues of the Laplacian can provide insights into various properties of the graph, such as connectivity and the number of spanning trees. This matrix is widely used in fields such as spectral graph theory, machine learning, and network analysis.