StudentsEducators

Noether Charge

The Noether Charge is a fundamental concept in theoretical physics that arises from Noether's theorem, which links symmetries and conservation laws. Specifically, for every continuous symmetry of the action of a physical system, there is a corresponding conserved quantity. This conserved quantity is referred to as the Noether Charge. For instance, if a system exhibits time translation symmetry, the associated Noether Charge is the energy of the system, which remains constant over time. Mathematically, if a symmetry transformation can be expressed as a change in the fields of the system, the Noether Charge QQQ can be computed from the Lagrangian density L\mathcal{L}L using the formula:

Q=∫d3x ∂L∂(∂0ϕ)δϕQ = \int d^3x \, \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi)} \delta \phiQ=∫d3x∂(∂0​ϕ)∂L​δϕ

where ϕ\phiϕ represents the fields of the system and δϕ\delta \phiδϕ denotes the variation due to the symmetry transformation. The importance of Noether Charges lies in their role in understanding the conservation laws that govern physical systems, thereby providing profound insights into the nature of fundamental interactions.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Jordan Curve

A Jordan Curve is a simple, closed curve in the plane, which means it does not intersect itself and forms a continuous loop. Formally, a Jordan Curve can be defined as the image of a continuous function f:[0,1]→R2f: [0, 1] \to \mathbb{R}^2f:[0,1]→R2 where f(0)=f(1)f(0) = f(1)f(0)=f(1) and f(t)f(t)f(t) is not equal to f(s)f(s)f(s) for any t≠st \neq st=s in the interval (0,1)(0, 1)(0,1). One of the most significant properties of a Jordan Curve is encapsulated in the Jordan Curve Theorem, which states that such a curve divides the plane into two distinct regions: an interior (bounded) and an exterior (unbounded). Furthermore, every point in the plane either lies inside the curve, outside the curve, or on the curve itself, emphasizing the curve's role in topology and geometric analysis.

Plasmonic Hot Electron Injection

Plasmonic Hot Electron Injection refers to the process where hot electrons, generated by the decay of surface plasmons in metallic nanostructures, are injected into a nearby semiconductor or insulator. This occurs when incident light excites surface plasmons on the metal's surface, causing a rapid increase in energy among the electrons, leading to a non-equilibrium distribution of energy. These high-energy electrons can then overcome the energy barrier at the interface and be transferred into the adjacent material, which can significantly enhance photonic and electronic processes.

The efficiency of this injection is influenced by several factors, including the material properties, interface quality, and excitation wavelength. This mechanism has promising applications in photovoltaics, sensing, and catalysis, as it can facilitate improved charge separation and enhance overall device performance.

Dirichlet Series

A Dirichlet series is a type of series that can be expressed in the form

D(s)=∑n=1∞annsD(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}D(s)=n=1∑∞​nsan​​

where sss is a complex number, and ana_nan​ are complex coefficients. This series converges for certain values of sss, typically in a half-plane of the complex plane. Dirichlet series are particularly significant in number theory, especially in the study of the distribution of prime numbers and in the formulation of various analytic functions. A famous example is the Riemann zeta function, defined as

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

for s>1s > 1s>1. The properties of Dirichlet series, including their convergence and analytic continuation, play a crucial role in understanding various mathematical phenomena, making them an essential tool in both pure and applied mathematics.

B-Trees

B-Trees are a type of self-balancing tree data structure that maintain sorted data and allow for efficient insertion, deletion, and search operations. They are particularly well-suited for systems that read and write large blocks of data, such as databases and filesystems. A B-Tree of order mmm can have a maximum of mmm children and a minimum of ⌈m/2⌉\lceil m/2 \rceil⌈m/2⌉ children per node. The keys within each node are stored in sorted order, which allows for quick searching and traversal. The properties of B-Trees ensure that the tree remains balanced, meaning that all leaf nodes are at the same depth, thus providing consistent performance for operations. In summary, B-Trees are efficient for handling large datasets and are a foundational structure in database systems due to their ability to minimize disk I/O operations.

Gluon Exchange

Gluon exchange refers to the fundamental process by which quarks and gluons interact in quantum chromodynamics (QCD), the theory that describes the strong force. In this context, gluons are the force carriers, similar to how photons mediate the electromagnetic force. When quarks exchange gluons, they experience the strong force, which binds them together to form protons, neutrons, and other hadrons.

This exchange is characterized by the property of color charge, which is a type of charge specific to the strong interaction. Gluons themselves carry color charge, leading to a complex interaction that involves multiple gluons being exchanged simultaneously, reflecting the non-abelian nature of QCD. The mathematical representation of gluon exchange can be described using Feynman diagrams, which illustrate the interactions at a particle level, showcasing how quarks and gluons are interconnected through the strong force.

Pigovian Tax

A Pigovian tax is a tax imposed on activities that generate negative externalities, which are costs not reflected in the market price. The idea is to align private costs with social costs, thereby reducing the occurrence of these harmful activities. For example, a tax on carbon emissions aims to encourage companies to lower their greenhouse gas output, as the tax makes it more expensive to pollute. The optimal tax level is often set equal to the marginal social cost of the negative externality, which can be expressed mathematically as:

T=MSC−MPCT = MSC - MPCT=MSC−MPC

where TTT is the tax, MSCMSCMSC is the marginal social cost, and MPCMPCMPC is the marginal private cost. By implementing a Pigovian tax, governments aim to promote socially desirable behavior while generating revenue that can be used to mitigate the effects of the externality or fund public goods.