StudentsEducators

Nyquist Stability Criterion

The Nyquist Stability Criterion is a graphical method used in control theory to assess the stability of a linear time-invariant (LTI) system based on its open-loop frequency response. This criterion involves plotting the Nyquist plot, which is a parametric plot of the complex function G(jω)G(j\omega)G(jω) over a range of frequencies ω\omegaω. The key idea is to count the number of encirclements of the point −1+0j-1 + 0j−1+0j in the complex plane, which is related to the number of poles of the closed-loop transfer function that are in the right half of the complex plane.

The criterion states that if the number of counterclockwise encirclements of −1-1−1 (denoted as NNN) is equal to the number of poles of the open-loop transfer function G(s)G(s)G(s) in the right half-plane (denoted as PPP), the closed-loop system is stable. Mathematically, this relationship can be expressed as:

N=PN = PN=P

In summary, the Nyquist Stability Criterion provides a powerful tool for engineers to determine the stability of feedback systems without needing to derive the characteristic equation explicitly.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Van Leer Flux Limiter

The Van Leer Flux Limiter is a numerical technique used in computational fluid dynamics, particularly for solving hyperbolic partial differential equations. It is designed to maintain the conservation properties of the numerical scheme while preventing non-physical oscillations, especially in regions with steep gradients or discontinuities. The method operates by limiting the fluxes at the interfaces between computational cells, ensuring that the solution remains bounded and stable.

The flux limiter is defined as a function that modifies the numerical flux based on the local flow characteristics. Specifically, it uses the ratio of the differences in neighboring cell values to determine whether to apply a linear or non-linear interpolation scheme. This can be expressed mathematically as:

ϕ={1,if Δq>0ΔqΔq+Δqnext,if Δq≤0\phi = \begin{cases} 1, & \text{if } \Delta q > 0 \\ \frac{\Delta q}{\Delta q + \Delta q_{\text{next}}}, & \text{if } \Delta q \leq 0 \end{cases}ϕ={1,Δq+Δqnext​Δq​,​if Δq>0if Δq≤0​

where Δq\Delta qΔq represents the differences in the conserved quantities across cells. By effectively balancing accuracy and stability, the Van Leer Flux Limiter helps to produce more reliable simulations of fluid flow phenomena.

Mandelbrot Set

The Mandelbrot Set is a famous fractal that is defined in the complex plane. It consists of all complex numbers ccc for which the sequence defined by the iterative function

zn+1=zn2+cz_{n+1} = z_n^2 + czn+1​=zn2​+c

remains bounded. Here, zzz starts at 0, and nnn represents the iteration count. The boundary of the Mandelbrot Set exhibits an infinitely complex structure, showcasing self-similarity and intricate detail at various scales. When visualized, the set forms a distinctive shape characterized by its bulbous formations and spiraling tendrils, often rendered in vibrant colors to represent the number of iterations before divergence. The exploration of the Mandelbrot Set not only captivates mathematicians but also has implications in various fields, including computer graphics and chaos theory.

Martingale Property

The Martingale Property is a fundamental concept in probability theory and stochastic processes, particularly in the study of financial markets and gambling. A sequence of random variables (Xn)n≥0(X_n)_{n \geq 0}(Xn​)n≥0​ is said to be a martingale with respect to a filtration (Fn)n≥0(\mathcal{F}_n)_{n \geq 0}(Fn​)n≥0​ if it satisfies the following conditions:

  1. Integrability: Each XnX_nXn​ must be integrable, meaning that the expected value E[∣Xn∣]<∞E[|X_n|] < \inftyE[∣Xn​∣]<∞.
  2. Adaptedness: Each XnX_nXn​ is Fn\mathcal{F}_nFn​-measurable, implying that the value of XnX_nXn​ can be determined by the information available up to time nnn.
  3. Martingale Condition: The expected value of the next observation, given all previous observations, equals the most recent observation, formally expressed as:
E[Xn+1∣Fn]=Xn E[X_{n+1} | \mathcal{F}_n] = X_nE[Xn+1​∣Fn​]=Xn​

This property indicates that, under the martingale framework, the future expected value of the process is equal to the present value, suggesting a fair game where there is no "predictable" trend over time.

Eigenvector Centrality

Eigenvector Centrality is a measure used in network analysis to determine the influence of a node within a network. Unlike simple degree centrality, which counts the number of direct connections a node has, eigenvector centrality accounts for the quality and influence of those connections. A node is considered important not just because it is connected to many other nodes, but also because it is connected to other influential nodes.

Mathematically, the eigenvector centrality xxx of a node can be defined using the adjacency matrix AAA of the graph:

Ax=λxAx = \lambda xAx=λx

Here, λ\lambdaλ represents the eigenvalue, and xxx is the eigenvector corresponding to that eigenvalue. The centrality score of a node is determined by its eigenvector component, reflecting its connectedness to other well-connected nodes in the network. This makes eigenvector centrality particularly useful in social networks, citation networks, and other complex systems where influence is a key factor.

Rf Mems Switch

An Rf Mems Switch (Radio Frequency Micro-Electro-Mechanical System Switch) is a type of switch that uses microelectromechanical systems technology to control radio frequency signals. These switches are characterized by their small size, low power consumption, and high switching speed, making them ideal for applications in telecommunications, aerospace, and defense. Unlike traditional mechanical switches, MEMS switches operate by using electrostatic forces to physically move a conductive element, allowing or interrupting the flow of electromagnetic signals.

Key advantages of Rf Mems Switches include:

  • Low insertion loss: This ensures minimal signal degradation.
  • Wide frequency range: They can operate efficiently over a broad spectrum of frequencies.
  • High isolation: This prevents interference between different signal paths.

Due to these features, Rf Mems Switches are increasingly being integrated into modern electronic systems, enhancing performance and reliability.

Supply Chain

A supply chain refers to the entire network of individuals, organizations, resources, activities, and technologies involved in the production and delivery of a product or service from its initial stages to the end consumer. It encompasses various components, including raw material suppliers, manufacturers, distributors, retailers, and customers. Effective supply chain management aims to optimize these interconnected processes to reduce costs, improve efficiency, and enhance customer satisfaction. Key elements of a supply chain include procurement, production, inventory management, and logistics, all of which must be coordinated to ensure timely delivery and quality. Additionally, modern supply chains increasingly rely on technology and data analytics to forecast demand, manage risks, and facilitate communication among stakeholders.