The Optimal Control Riccati Equation is a fundamental component in the field of optimal control theory, particularly in the context of linear quadratic regulator (LQR) problems. It is a second-order differential or algebraic equation that arises when trying to minimize a quadratic cost function, typically expressed as:
where is the state vector, is the control input vector, and and are symmetric positive semi-definite matrices that weight the state and control input, respectively. The Riccati equation itself can be formulated as:
Here, and are the system matrices that define the dynamics of the state and control input, and is the solution matrix that helps define the optimal feedback control law . The solution must be positive semi-definite, ensuring that the cost function is minimized. This equation is crucial for determining the optimal state feedback policy in linear systems, making it a cornerstone of modern control theory
Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.