StudentsEducators

Organic Field-Effect Transistor Physics

Organic Field-Effect Transistors (OFETs) are a type of transistor that utilizes organic semiconductor materials to control electrical current. Unlike traditional inorganic semiconductors, OFETs rely on the movement of charge carriers, such as holes or electrons, through organic compounds. The operation of an OFET is based on the application of an electric field, which induces a channel of charge carriers in the organic layer between the source and drain electrodes. Key parameters of OFETs include mobility, threshold voltage, and subthreshold slope, which are influenced by factors like material purity and device architecture.

The basic structure of an OFET consists of a gate, a dielectric layer, an organic semiconductor layer, and source and drain electrodes. The performance of these devices can be described by the equation:

ID=μCoxWL(VGS−Vth)2I_D = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2ID​=μCox​LW​(VGS​−Vth​)2

where IDI_DID​ is the drain current, μ\muμ is the carrier mobility, CoxC_{ox}Cox​ is the gate capacitance per unit area, WWW and LLL are the width and length of the channel, and VGSV_{GS}VGS​ is the gate-source voltage with VthV_{th}Vth​ as the threshold voltage. The unique properties of organic materials, such as flexibility and low processing temperatures, make OFET

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Krylov Subspace

The Krylov subspace is a fundamental concept in numerical linear algebra, particularly useful for solving large systems of linear equations and eigenvalue problems. Given a square matrix AAA and a vector bbb, the kkk-th Krylov subspace is defined as:

Kk(A,b)=span{b,Ab,A2b,…,Ak−1b}K_k(A, b) = \text{span}\{ b, Ab, A^2b, \ldots, A^{k-1}b \}Kk​(A,b)=span{b,Ab,A2b,…,Ak−1b}

This subspace encapsulates the behavior of the matrix AAA as it acts on the vector bbb through multiple iterations. Krylov subspaces are crucial in iterative methods such as the Conjugate Gradient and GMRES (Generalized Minimal Residual) methods, as they allow for the approximation of solutions in a lower-dimensional space, which significantly reduces computational costs. By focusing on these subspaces, one can achieve effective convergence properties while maintaining numerical stability, making them a powerful tool in scientific computing and engineering applications.

Torus Embeddings In Topology

Torus embeddings refer to the ways in which a torus, a surface shaped like a doughnut, can be embedded in a higher-dimensional space, typically in three-dimensional space R3\mathbb{R}^3R3. A torus can be mathematically represented as the product of two circles, denoted as S1×S1S^1 \times S^1S1×S1. When discussing embeddings, we focus on how this toroidal shape can be placed in R3\mathbb{R}^3R3 without self-intersecting.

Key aspects of torus embeddings include:

  • The topological properties of the torus remain invariant under continuous deformations.
  • Different embeddings can give rise to distinct knot types, leading to fascinating intersections between topology and knot theory.
  • Understanding these embeddings helps in visualizing complex structures and plays a crucial role in fields such as computer graphics and robotics, where spatial reasoning is essential.

In summary, torus embeddings serve as a fundamental concept in topology, allowing mathematicians and scientists to explore the intricate relationships between shapes and spaces.

Harberger’S Triangle

Harberger's Triangle is a conceptual tool used in public finance and economics to illustrate the efficiency costs of taxation. It visually represents the trade-offs between equity and efficiency when a government imposes taxes. The triangle is formed on a graph where the base represents the level of economic activity and the height signifies the deadweight loss created by taxation.

This deadweight loss occurs because taxes distort market behavior, leading to a reduction in the quantity of goods and services traded. The area of the triangle can be calculated as 12×base×height\frac{1}{2} \times \text{base} \times \text{height}21​×base×height, demonstrating how the inefficiencies grow as tax rates increase. Understanding Harberger's Triangle helps policymakers evaluate the impacts of tax policies on economic efficiency and inform decisions that balance revenue generation with minimal market distortion.

Epigenetic Reprogramming

Epigenetic reprogramming refers to the process by which the epigenetic landscape of a cell is altered, leading to changes in gene expression without modifying the underlying DNA sequence. This phenomenon is crucial during development, stem cell differentiation, and in response to environmental stimuli. Key mechanisms of epigenetic reprogramming include DNA methylation, histone modification, and the action of non-coding RNAs. These changes can be stable and heritable, allowing for cellular plasticity and adaptation. For instance, induced pluripotent stem cells (iPSCs) are created through reprogramming somatic cells, effectively reverting them to a pluripotent state capable of differentiating into various cell types. Understanding epigenetic reprogramming holds significant potential for therapeutic applications, including regenerative medicine and cancer treatment.

Solow Growth Model Assumptions

The Solow Growth Model is based on several key assumptions that help to explain long-term economic growth. Firstly, it assumes a production function characterized by constant returns to scale, typically represented as Y=F(K,L)Y = F(K, L)Y=F(K,L), where YYY is output, KKK is capital, and LLL is labor. Furthermore, the model presumes that both labor and capital are subject to diminishing returns, meaning that as more capital is added to a fixed amount of labor, the additional output produced will eventually decrease.

Another important assumption is the exogenous nature of technological progress, which is regarded as a key driver of sustained economic growth. This implies that advancements in technology occur independently of the economic system. Additionally, the model operates under the premise of a closed economy without government intervention, ensuring that savings are equal to investment. Lastly, it assumes that the population grows at a constant rate, influencing both labor supply and the dynamics of capital accumulation.

Eigenvalues

Eigenvalues are a fundamental concept in linear algebra, particularly in the study of linear transformations and systems of linear equations. An eigenvalue is a scalar λ\lambdaλ associated with a square matrix AAA such that there exists a non-zero vector vvv (called an eigenvector) satisfying the equation:

Av=λvAv = \lambda vAv=λv

This means that when the matrix AAA acts on the eigenvector vvv, the output is simply the eigenvector scaled by the eigenvalue λ\lambdaλ. Eigenvalues provide significant insight into the properties of a matrix, such as its stability and the behavior of dynamical systems. They are crucial in various applications including principal component analysis, vibrations in mechanical systems, and quantum mechanics.